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Abstract

We present algorithms for a class of resource allocation problems both in the online setting with stochastic input
and in the offline setting. This class of problems contains many interesting special cases such as the Adwords problem.
In the online setting we introduce a new distributional model called the adversarial stochastic input model, which is
a generalization of the i.i.d model with unknown distributions, where the distributions can change over time. In this
model we give al — O(e) approximation algorithm for the resource allocation problem, with almost the weakest
possible assumption: the ratio of the maximum amount of resource consumed by any single request to the total capacity

of the resource, and the ratio of the profit contributed by any single request to the optimal profit is &t 05 i/e) )

wheren is the number of resources available. There are instances where this rafiddg » such that no randomized
algorithm can have a competitive ratio bf- o(e) even in the i.i.d model. The upper bound on ratio that we require
improves on the previous upper-bound for the i.i.d case by a factor of

Our proof technique also gives a very simple proof that the greedy algorithm has a competitive tatid gé for
the Adwords problem in the i.i.d model with unknown distributions, and more generally in the adversarial stochastic
input model, when there is no bound on the bid to budget ratio. All the previous proofs assume that either bids are very
small compared to budgets or something very similar to this.

In the offline setting we give a fast algorithm to solve very large LPs with both packing and covering constraints.
We give algorithms to approximately solve (within a factor Ioft €) the mixed packing-covering problem with
O(%}"/‘”) oracle calls where the constraint matrix of this LP has dimension m, the success probability
of the algorithm isl — 4, and~ is a parameter which is very similar to the ratio described for the online setting.

We discuss several applications, and how our algorithms improve existing results in some of these applications.
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1 Introduction

The results in this paper fall into distinct categories of competitive algorithms for online problems and fast approximation
algorithms for offline problems. We have two main results in the online framework and one result in the offline setting.
However they all share common techniques.

There has been an increasing interest in online algorithms motivated by applications to online advertising. The most
well known is theAdwordsproblem introduced by Mehta et. al._[MSVVO05], where the algorithm needs to assign
keywords arriving online to bidders to maximize profit, subject to budget constraints for the bidders. The problem
has been analyzed in the traditional framework for online algorithms: worst-case competitive analysis. As with many
online problems, the worst-case competitive analysis is not entirely satisfactory and there has been a drive in the last few
years to go beyond the worst-case analysis. The predominant approach has been to assume that the input satisfies some
stochastic property. For instance tiamdom permutatiomodel (introduced by Goel and Mehta [GM08]) assumes that
the adversary picks the set of keywords, but the order in which the keywords arrive is chosen uniformly at random. A
closely related model is thie.d model: assume that the keywords are i.i.d samples from a fixed distribution, which
is unknownto the algorithm. Stronger assumptions such as i.i.d samples fremowndistribution have also been
considered.

First Result. A key parameter on which many of the algorithms for Adwords depend is the bid to budget ratio. For
instance in Mehta et. al. [MSVV05] and Buchbinder, Jain and Naor [BINO7] the algorithm achieves a worst case
competitive ratio that tends tb— 1/¢ as the bid to budget ratio (let's call4) tends to 0. T — 1/e is also the best
competitive ratio that any randomized algorithm can achieve in the worst case.) Devanur and Hayées [DH09] showed that
in the random permutation model, the competitive ratio tends toyltaads to 0. This result showed that competitive

ratio of algorithms in stochastic models could be much better than that of algorithms in the worst case. The important
guestion since then has been to determine the optimal trade-off betwesh the competitive ratiol [DH09] showed

how to get a 1.0(e) competitive ratio wher is at mostO(W;n/e)) wheren is the number of advertisers andis

the number of keywords. Subsequently Agrawal, Wang and Ye [AWY09] improved the boumdoo@(m)
The papers of Feldman et. al. [FHK(] and Agrawal, Wang and YE JAWY09] have also shown that the technique of
[DHQ9] can be extended to other online problems.

The first main result in this paper is the following 3-fold improvement of previous results: (Thgdréms 2 - 4)

1. We give an algorithm which improves the bound-pto O( ) This is almostoptimal we show a lower

log

bound oflog(n)

2. The bound applies to a more general model of stochastic input, calladtbesarial stochastic inpuhodel. This
is a generalization of the i.i.d model with unknown distribution, but is incomparable to the random permutation
model.

3. It applies to a more general class of online problems that we catefmirce allocation frameworkA formal
definition of the framework is presented in Sectjon] 2.2 and a discussion of many interesting special cases is
presented in Sectidn 7.

Regarding the bound on the removal of the factor of is significant. Consider for instance the Adwords problem
and suppose that the bids are all in [0,1]. The earlier bound implies that the budgets need to be of themgtder of
in order to get al — e competitive algorithm, where is the number of advertisers. With realistic values for these
parameters, it seems unlikely that this condition would be met. While with the improved bounds presented in this paper,
we only need the budget to be of the ordetw@fn /e? and this condition is met for reasonable values of the parameters.
Furthermore, in the resource allocation framework, the current highest upper boynid fnom Agrawal, Wang and
Ye [AWYQ9] and equal@(m). Herek is the number of available “options” (see Sec 2.2) and in typical
applications like network routings could be exponential im, and thus, the factor saved by our algorithm becomes
quadratic inn.

We note here that so far, all the algorithms for the i.i.d model (with unknown distribution) were actually designed for
the random permutation model. It seems that any algorithm that works for one should also work for the other. However



we can only show that our algorithm works in the i.i.d model, so the natural question is if our algorithm works for the
random permutation model. It would be very surprising if it didn’t.

One drawback of the stochastic models considered so far is that they are time invariant, that is the input distribution
does not change over time. The adversarial stochastic input model allows the input distribution to change over time.
The model is as follows: in every step the adversary picks a distribution, possibly adaptively depending on what the
algorithm has done so far, and the actual keyword in that step is drawn from this distribution. The competitive ratio
is defined with respect to the optimum fractional solution foio#ftine instance of the problem, called téstribution
instance which is defined by the distribution. In Section]2.2, where we define the distribution instance, we also prove
that the optimal fractional solution for the distribution instance is at least as good as the commonly used benchmark
of expected value of optimal fractional solution, where the expectation is with respect to the distribution. A detailed
description of this model, how the adversary is constrained to pick its distributions and how it differs from the worst-case
model is presented in Sectipn P.2.

Second Result. Another important open problem is to improve the competitive ratio for the Adwords problem when
there is no bound on. The best competitive ratio known for this problem j in the worst case. Nothing better was
known, even in the stochastic models. (For the special case of online bipartite matching, in the case of i.i.d input with a
knowndistribution, recent series of results achieve aratio of better than 1-1/e, for instance by Feldman et. al. [EMMMOQ09]
and Bahmani and Kapralov [BKILO]. The best ratio so far is .702 by Manshadi, Gharan and |Saberi [MGS11]. The same
online bipartite matching has been recently studied in the random permutation model by Mahdian and Yan [MY11] and
by Karande, Mehta and Tripathi [KMTL1]. The best ratio so fab.896 by Mahdian and Yan [MY11].)The second

result in this paper is that for the Adwords problem in the adversarial stochastic input model, with no assumption on
~, the greedy algorithm gets a competitive ratiolof 1/e against the optimal fractional solution to the distribution
instance (Theorein 5Y'he greedy algorithm is particularly interesting since it is a natural algorithm that is used widely
for its simplicity. Because of its wide use, previously the performance of the greedy algorithm has been analyzed by
Goel and Mehta [GM08] who showed that in the random permutation and the i.i.d models, it has a competitive ratio of
1 — 1/e with an assumption which is essentially thaends to 0.

Third Result. Charles et. al. [CCD10] considered the following (offline) problem: given a lopsided bipartite graph

G = (L,R, F), that is a bipartite graph where = |L| > |R| = n, does there exist an assignmédt: L — R

with (4, M(j)) € E for all j € L, and such that for every vertéxc R, |M~1(i)| > B; for some given values;.

Even though this is a classic problem in combinatorial optimization with well known polynomial time algorithms, the
instances of interest are too large to use traditional approaches to solve this problem. (The walnepafticular is

very large.) The approach used by [CCI]] was to essentially design an online algorithm in the i.i.d model: choose
vertices fromL uniformly at random and assign them to verticeddrin an online fashion. The online algorithm is
guaranteed to be close to optimal, as long as sufficiently many samples are drawn. Therefore it can be used to solve the
original problem (approximately): the online algorithm gets an almost satisfying assignment if and only if the original
graph has a satisfying assignment (with high probability).

The third result in this paper is a generalization of this result to get fast approximation algorithms for a wide class
of problems in the resource allocation framework (ThedrémRpblems in the resource allocation framework where
the instances are too large to use traditional algorithms occur fairly often, especially in the context of online advertising.
Formal statements and a more detailed discussion are presented in Segtion 2.3.

The underlying idea used for all these results can be summarized at a high level as thus: consider a hypothetical
algorithm calledPure-randomthat knows the distribution from which the input is drawn and uses an optimal solution
w.r.t this distribution. Now suppose that we can analyze the performance of Pure-random by considering a potential
function and showing that it decreases by a certain amount in each step. Now we can design an algorithm that does
not know the distribution as follows: consider the same potential function, and in every step choose the option that
minimizes the potential function. Since the algorithm minimizes the potential in each step, the decrease in the potential
for this algorithm is better than that for Pure-random and hence we obtain the same guarantee as that for Pure-random.

For instance, for the case wheyes small, the performance of Pure-random is analyzed using Chernoff bounds.
The Chernoff bounds are proven by showing bounds on the expectation of the moment generating function of a random
variable. Thus the potential function is the sum of the moment generating functions for all the random variables that we
apply the Chernoff bounds to. The proof shows that in each step this potential function decreases by some multiplicative



factor. The algorithm is then designed to achieve the same decrease in the potential function. A particularly pleasing
aspect about this technique is that we obtain very simple proofs. For instance, the proof of Theorem 5 is extremely
simple: the potential function in this case is simply the total amount of unused budgets and we show that this amount
(in expectation) decreases by a factof 6f 1/m in each step where there aresteps in all.

On the surface, this technique and the resulting aIgorE}‘rmar a close resemblance to the algorithms of Young
[You95, [YouOl] for derandomizing randomized rounding and the fast approximation algorithms for solving cover-
ing/packing LPs of Plotkin, Shmoys and Tardos [PST91], Garg amkekhann [GK98],Fleischer [FleD0]. In fact Arora,
Hazan and Kald_ JAHKO5] showed that all these algorithms are related to the multiplicative weights update method for
solving theexpertsproblem and especially highlighted the similarity between the potential function used in the analy-
sis of the multiplicative update method and the moment generating function used in the proof of Chernoff bounds and
Young's algorithms. Hence it is no surprise that our algorithm is also a multiplicative update algorithm. It seems that our
algorithm is closer in spirit to Young’s algorithms than others. A basic difference of our algorithm from this previous set
of results is that in all these works, every single iteration of the algorithm involves changing the entire solution vector
x, while our algorithm changes only a single coordinate of the vecfmer iteration. In other words, our algorithm uses
the special structure of the polytof#g in giving a more efficient solution. It is possible that our algorithm can also
be interpreted as an algorithm for the experts problem. In fact Mehta et._al. [MSVVO05] asked if there-ie@ )
competitive algorithm for Adwords in the i.i.d model with small bid to budget ratio, and in particular if the algorithms
for experts could be used. They also conjectured that such an algorithm would iteratively adjust a budget discount factor
based on the rate at which the budget is spent. Our algorithms for resource allocation problem when specialized for Ad-
words look exactly like that and with the connections to the experts framework, we answer the questions in [MSVV05]
in the positive.

Organization. The rest of the paper is organized as follows. In Se€fjon 2, we define the resource allocation framework,
the adversarial stochastic model and state our results formally as theorems. We also discuss one special case of the
resource allocation framework — the adwords problem and formally state our results. In $éction 3, we consider a
simplified “min-max” version of the resource allocation framework and present the proofs for this version. The other
results build upon this simple version. In Sectign 4 we give a fast approximation algorithm for the mixed covering-
packing problem (Theoref 6). THe— O(e) competitive online algorithm for the resource allocation framework with
stochastic input (Theorenh 2) is in Sectjdn 5. Thel/e competitive algorithm (Theorepy 5) for the Adwords problem is

in Sectiorf 6. Several special cases of the resource allocation framework are considered ifi Section 7] Section 8 concludes
with some open problems and directions for future research.

2 Preliminaries & Main Results

2.1 Resource allocation framework

We consider the following framework of optimization problems. Therewagsources, with resourédaving a capacity

of ¢;. There aren requests; each requestan be satisfied by a vectat; that is constrained to be in a polytog.

(We refer to the vectok; as an option to satisfy a request, and the polytBpas the set of options.) The vectey
consumes; ; - x; amount of resourcé and gives a profit ofv; - x;. Note thata, ;, w; andx; are all vectors. The
objective is to maximize the total profit subject to the capacity constraints on the resources. The following LP describes
the problem:

maximize )~ w; - x; S.t.
J
Vi,ZaM * Xy < C;
J
Vi, x; € Pj.

1 For the case of small. It is not clear if this discussion applies to the case of largenat is to TheorerE]5



We assume that we have the following oracle available to us: given a refjaest a vectow, the oracle returns

the vectorx, that maximizess.x,; among all vectors irP,;. Lety = max {M} U {52} | be the notion
J J J o S W= J;

corresponding to the bid to budget ratio for Adwords. H#ré is the optimal offline objective to the distribution
instance, defined in Sectipn P.2.

The canonical case is where edhis a unit simplex irR”, i.e. P; = {x; € R® : 3, x;x = 1}. This captures
the case where there afé discrete options, each with a given profit and consumption. This case captures most of the
applications we are interested in, which are described in Sédtion 7. All the proofs will be presented for this special case,
for ease of exposition. The co-ordinates of the vectgrsandw; will be denoted byu(z, 7, k) andw, ;, respectively,
i.e., thek'™ option consumes(i, j, k) amount of resourceéand gives a profit ofv; . For an example of an application
that needs more general polytopes see Seftign 7.5.

We consider two versions of the above problem. The first is an online version with stochastic input: requests are
drawn from an unknown distribution. The second is when the number of requests is much larger than the number of
resources, and our goal is to design a fast PTAS for the problem.

2.2 Online Algorithms with Stochastic Input

We now consider an online version of the resource allocation framework. Here requests arrive online. We consider
the i.i.d. model, where each request is drawn independently from a given distribution. The distribution is unknown
to the algorithm. The algorithm knows, the total number of requests. The competitive ratios we give for resource
allocation problems with bounded are with respect to an upper bound on the expected value of fractional optimal
solution, namely, the fractional optimal solution of the distribution instance, defined below.

Consider the followinglistribution instancef the problem. Itis an offline instance defined for any given distribution
over requests and the total number of requestIhe capacities of the resources in this instance are the same as in the
original instance. Every request in the support of the distribution is also a request in this instance. Supposg request
occurs with probability,;. The resource consumption pin the distribution instance is given byp;a; ; for all s and
the profit ismp;w;. The intuition is that if the requests were drawn from this distribution then the expected number
of times requesj is seen isnp; and this is represented in the distribution instance by scaling the consumption and the
profit vectors bymp;. To summarize, the distribution instance is as follows.

maximize Y mp;w;.x; St.
7 in the support
\ i, Z mpja; j.X; S C;
J
Y 4, x; € P;j.

We now prove that the fractional optimal solution to the distribution instance is an upper bound on the expectation of
OPT, where OPT is the offline fractional optimum of the actual sequence of requests.

Lemma 1 OPT[Distribution instance] > E[OPT]

Proof: The average of optimal solutions for all possible sequences of requests should give a feasible solution to the
distribution instance with a profit equal 8[OPT]. Thus the optimal profit for the distribution instance could only be
larger.O

The competitive raticof an algorithm in the i.i.d model is defined as the ratio of the expected profit of the algorithm
to the fractional optimal profit for the distribution instance. The main result is thattasds to zero, the competitive
ratio tends to 1. In fact, we give the almost optimal trade-off.

Theorem 2 For any e > 0, we give an algorithm such that if = O (ﬁ) then the competitive ratio of the
algorithm is1 — O(e).
€2

Theorem 3 There exist instances with= o=t such that no algorithm can get a competitive ratiol of 0(6)

2 The proof of this theorem is obtained by a modification of a similar theorem for random permutations presénted in][AWY09].



Also, our algorithm works when the polyto®, is obtained as an LP relaxation of the actual prot@r‘ﬁ) be
precise, suppose that the set of options that could be used to satisfy a given request corresponds to some set of vectors,
sayZ;. Let the polytopeP; O Z; be ana approximate relaxatiowf Z; if for the profit vectorw; and for allx; € P;,
there is an oracle that returngya € Z; such thatw;.y; > aw;.x; and for alli, a; ;.y; < a; ;.x;. Given such an
oracle, our algorithm achieves a competitive ratieof O(e).

Theorem 4 Given a resource allocation problem with anapproximate relaxation, and for any > 0, we give an
algorithm such that iy = O (ﬁ) then the competitive ratio of the algorithmds— O(e).

Proof:(Sketch.) Consider the problem in the resource allocation framework defined by the relaxation, that isjrequest
can actually be satisfied by the polytope. The optimal solution to the relaxation is an upper bound on the optimal
solution to the original problem. Now run Algorithim 1 on the relaxation, and when the algorithm picks a xgdtor
serve request, use the rounding oracle to round it to a solutipnand use this solution. Since the sequence &8

picked by the algorithm are withih — O(e) of the optimum for the relaxation, and for gllw,.y; > aw;.x;, this
algorithm isa(1 — O(e)) competitive.O

In fact, our results hold for the following more general model, déidwersarial stochastic inpuinodel. In each
step, the adversary adaptively chooses a distribution from which the request in that step is drawn. The adversary is
constrained to pick the distributions in one of the following two ways. In the first case, we assume that a target objective
value OPT is given to the algorithrﬂ]. and that the adversary is constrained to pick distributions such that the fractional
optimum solution oeachof the corresponding distribution instances is at least ©@T at most OPF for minimization
problems). The competitive ratio is defined with respect to @R the second case, we are not given a target, but the
adversary is constrained to pick distributions so that the fractional optimum of each of the corresponding distribution
instances is the same, which is the benchmark with respect to which the competitive ratio is defined.

Note that while the i.i.d model can be reduced to the random permutation model, these generalizations are incom-
parable to the random permutation model as they allow the input to vary over time. Also the constraint that each of the
distribution instances has a large optimum value distinguishes this from the worst-case model. This constraint in general
implies that the distribution must contain sufficiently rich variety of requests in order for the corresponding distribution
instance to have a high optimum. To truly simulate the worst-case model, in every step the adversary would chose a
“deterministic distribution”, that is a distribution supported on a single request. Then the distribution instance will sim-
ply havem copies of this single request and hence will not have a high optimum. For instance consider online bipartite
b-matching where each resource is a node on one side of a bipartite graph with the cgpdeityting the number of
nodes it can be matched to and the requests are nodes on the other side of the graph and can be matched to at most one
node. A deterministic distribution in this case corresponds to a single online node and if that node is nephaatesl
then the optimum for that instance is just the weighted (Y)ydegree of that node. If the adversary only picks such
deterministic distributions then he is constrained to pick nodes of very high degree thus making it easy for the algorithm
to match them.

We refer the reader to Sectiph 7 for a discussion on several problems that are special cases of the resource allocation
framework and have been previously considered. Here, we discuss one special case — the adwords problem.

2.2.1 The Adwords problem

In the i.i.d Adwordsproblem, there are bidders, and each biddéhas a daily budget oB; dollars. Keywordsarrive
online with keyword; having an (unknown) probability; of arriving in any given step. For every keywojdeach
bidder submits a bid; ;, which is the profit obtained by the algorithm on allocating keywpta bidder:. The objective
is to maximize the profit, subject to the constraint that no bidder is charged more than his budget. Here, the resources are
the daily budgets of the bidders, the requests are the keywords, and the options are once again the bidders. The amount
of resource consumed and the profit are dgih
For this problem, with no bounds en we show that the greedy algorithm has a competitive ratib-efl /e. For
our results for the adwords problem with boundedee Sectiop 7]1

3 There may be trivial ways of definirg; such that its vertices correspond to the actual options. The motivation for allowing non-trivial relaxations
is computational: recall that we need to be able to optimize linear functiongjver

4n this case, we requirg = max ({ aéi’”} U {glp.’lff ) i.e., OPT; takes the place dfi* in the definition ofy.
i Jiy )




Theorem 5 The greedy algorithm achieves a competitive ratid ef 1/¢ for the Adwords problem in the adversarial
stochastic input model with no assumptions on the bid to budget ratio.

We note here that the competitive ratiolof- 1/¢ is tight for the greedy algorithni [GMO08]. It is however not known to
be tight for an arbitrary algorithm.

2.3 Fast algorithms for very large LPs

Charles et al.| [CCD10] consider the following problem: given a bipartite gragh= (L, R, E) wherem = |L| >
|R| = n, does there exist an assignm@iit: L — R with (j, M (j)) € E forall j € L, and such that for every vertex
i € R, |M~1(i)| > B; for some given value®;. They gave an algorithm that runs in time Iirﬁirr the number of

edges of an induced subgraph obtained by taking a random sampl&fadisize O (mfﬁ%) for a gap-version of
the problem with gap. Whenmin;{ B; } is reasonably large, such an algorithm is very useful in a variety of applications
involving ad assignment for online advertising.

We consider a generalization of the above problem (that corresponds to the resource allocation framework). In
fact, we consider the following mixed covering-packing problem. Suppose that theng pecking constraints, one
for eachi € {1..n;} of the formE;.":1 a; jx; < ¢; andny covering constraints, one for eacke {1..n,} of the form
>i-1 bijx; > d;. Eachx; is constrained to be i?;. Does there exists a feasible solution to this system of constraints?
The gap-version of this problem is as follows. Distinguish between the two cases, with a high probability, §ay

YES: There is a feasible solution.

NO: There is no feasible solution even if all of thés are multiplied byl + € and all of thed;’s is multiplied by1 — e.

We note that solving (offline) an optimization problem in the resource allocation framework can be reduced to the above
problem through a binary search on the objective function value.

Suppose as in [CCD10] thatm is much larger tham. Assume that solving the following costs unit time: given
andv, find x; € P; that maximizes.x;. Lety = max{i € [n1],j € [m] : 222} U {i € [no],j € [m] : %}

Theorem 6 For anye > 0, there is an algorithm that solves the gap version of the mixed covering-packing problem
with a running time of) (%2("/5)) .

Applications to online advertising:

The matching problem introduced by [CCEDA] was motivated by the problem of computing the available inventory
for display ad allocation (see the original paper for details). In fact, the matching problem was a simplified version of
the real problem, which fits into the resource allocation framework. Moreover, such algorithms are used in multiple
ways. For instance, although the technique of Devanur and Hayes [DHO09] was originally designed to solve the purely
online problem, it can be used in the PAC model where the algorithm can make use of a prediction of the future arrival
of requests (see for instance Vee, Vassilvitskii and Shanmugasundaram [VVS10]). The key technique is to formulate
an LP relaxation of the problem and learn the optimal dual variables using the prediction, and these duals can then be
used for the allocation online. Even if the prediction is not entirely accurate, we note that such an approach has certain
advantages. This motivates the problem of finding the optimal duals. We observe that our algorithm can also be used to
compute near optimal duals which can then be used to do the allocation online. Many problems (for instance the Display
ad allocation problem) can benefit from such an algorithm.

A similar approach was considered by Abrams, Mendelevitch and Tomlin [AMTO07] for the following problem
motivated by sponsored search auctions: for epadry j, one can show an advertiser in each of fieslots. Each
advertiser: bids a certain amount on each qugnand has a daily budget. However, the cost to an advertiser depends
on the entire ordered set of advertisers shown (callddta), based on the rules of the auction. Given the set of queries
that arrive in a day (which in practice is an estimate of the queries expected rather than the actual queries), the goal
is to schedule a slate of advertisers for each query such that the total cost to each advertiser is within the budget and
maximize a given objective such as the total revenue, or the social welfare. This problem is modeled as an LP and
a column-generation approach is suggested to solve it. Also, many compromises are made, in terms of limiting the
number of queries, etc. due to the difficulties in solving an LP of very large size. We observe that this LP fits in the
resource allocation framework and thus can be solved quickly using our algorithm.

5In fact, the algorithm makes a single pass through this graph.



Chernoff bounds. We present here the form of Chernoff bounds that we use throughout the rest of this paper. Let
X =3, X;, whereX; € [0, B] are i.i.d random variables. L&[X] = x. Then, for alle > 0,

Pr[X < p(1—€)] < exp (‘i}“) .

Consequently, for alf > 0, with probability at least — ¢,

X —u>—+/2uBIn(1/96).

Similarly, for all e € [0, 2e — 1],

Pr[X > p(1+€)] < exp (:f;“) .

Consequently, for alf > exp(_(%;li;)zu), with probability at least — §,

X — < +\/4uBln(1/6).

3 Min-Max version

In this section, we solve a slightly simplified version of the general online resource allocation problem, which we call
the min-max version. In this problerm, requests arrive online, and each of them must be served. The objective is to
minimize the maximum fraction of any resource consumed. (There is no profit.) The following LP describes it formally.

minimize \ s.t.
v Z.7 Z a’(iv.j’ k)mj,k S Aci

7,k
vj7zxj,k' = 17

k
Vj,k,xmk 2 0

For ease of illustration, we assume that the requests arrive i.i.d (unknown distribution) in the following proof. At the
end of this section, we show that the proof holds for the adversarial stochastic input model also.

The algorithm proceeds in steps. Let denote the fractional optimal objective value of the distribution instance
of this problem. LetX! be the random variable indicating the amount of resourcensumed during step that is,

X! = a(i,j, k) if in stept, requestj was chosen and was served using opfionLet S} = Zthl X! be the total
amount of resourcé consumed in the first” steps. Lety = maxw,k{a(i’;ii’k)}, which implies that for alk, j andk,

a(i,j, k) < vei. Letg! = (14 €)5i/0¢). For the sake of convenience, we Kt = 0 and¢? = 1 for all i. The
algorithm is as follows.

ci

ALG Min-max In stept + 1, on receiving request, use optiorarg ming, {Zi M} .

Lemma 7 For anye € (0, 1], The algorithmALG Min-max described above approximat&s within a factor of(1+¢),
with a probability at least — §, whered = nexp (‘j;”)

We will prove Lemmd |7 through a series of lemmas, namely Lemfrjdg 8, P and 10. Before we begin the proof, we
give some intuition. Consider a hypothetical algorithm, cafure-randomthat knows the distribution. Let; denote

the optimal fractional solution to the distribution instance. Pure-random is a non-adaptive algorithm whigh teses
satisfy requesy, i.e., it serves requegtusing optionk with probability ;. Suppose we wanted to prove a bound

on the performance of Pure-random, that is show that with high probability, Pure-random is Wwithin(¢) of the
optimum, say\*. This can be done using Chernoff bounds: for each resource separately bound the probability that the
total consumption is more thaxtc;(1 + O(e)) using Chernoff bounds and take a union bound. Note that the Chernoff



bounds are shown by proving an upper bound on the expectation of the moment generating function of the random
variables. If we could show the same bound for our algorithm, then we would be dong’ Leb . ¢!. We wish to
upper bound the expectation ¢f*.
Consider the state of the algorithm after the firsteps. Letf(t“ denote the amount of resourceonsumed in step
t + 1 had we served the request at step 1 using the Pure- random algorithm instead of our algorithm. Then we show

that the expectation af*** is upper bounded by"; ¢! (1 + e X ) and the rest of the proof is along the lines of the
Chernoff bound proof.

Lemma 8 For all ¢,

Xt+1
i+l < 1 .
¢ Z¢ ( +e%>

Proof:

xt+1

o = Lot =T
Z¢t(1+e t+1> Z¢t<1+e t+1>

The first inequality is because the convexity of the functiba+ €)* can be used to upper bound it by ex for all
z € [0,1], andX} < max; a(i, j, k) < v¢;. The second inequality follows from the definition of our algorithm as it

chooses the option that minimizégi M} O

&)

IA

Lemma9 Forall T, E[¢p”] < nexp (j—mT) where)\* is the optimal solution to the LP.

Xt
)
C (i)

ym
¢t exp (EA*>

ym

and hence the lemma follows singe = n. The second inequality follows from the fact tHBgX /™) < 2 < for all i.
This is because requests are drawn i.i.d, and hence the optimal value of the distribution instance is the same for all time
steps and is equal to*. O

Proof: From LemmaB, it follows that

E [¢"T! | ¢! foralli] <

IN

IN

Lemma 10 r )
T —e“T\*
Pr{max{s }>/\*(1+e)}§nexp< ¢ A).
i ci 4ym
Proof:
T *(14e
Pr {max{si} > Ty —l—e)} < Pr [¢T > (14e) )}
7 C; m
TA*(1+¢€)
< E[p"]/(1+e
eX*T TA*(146)
< 1 ym
< nexp( o )/( +e€)
<

—2T\*
nexp m )



The inequality in the first line is becauseax; ¢! < ¢7. The rest is similar to proofs of Chernoff bounds. The
second line follows from Markov’s inequality, the third line from Lemjnha 9 and the fourth line is a well known algebraic
inequality wheneves € (0, 2e — 1], and in particular when € (0,1]. O

Substitutingl” = m in Lemmg 10, we get Lemnja 7.

Adversarial stochastic input model In the above lemmas, we assumed that the requests are drawn i.i.d, i.e., we used
the fact thatE[X?] < M¢;/m for all t. But in an adversarial stochastic model, since the distribution from which a
request is drawn changes each step, the optimal objective of the distribution instance also changes every step, i.e., it
could be\} at stept. So, in the proof Lemmfg 9, where we proved that

E [¢'T! | ¢! foralli] < ¢'exp (6)\ ) ,
ym

we would instead havE [¢'T | ¢! for all i] < ¢'exp (%) But given a targeh*, we know the adversary is con-
strained to pick distributions whose distribution instance has an optimum objettiv@st\* (recall that this is a
minimization problem). Therefore, we can upper bouridxp (773) y ¢! exp (fﬁ) The rest of the steps in the
proof remain the same. Thus, the adversary is not constrained to pick requests from the same distribution at every time
step. All we require is that, whatever distribution it uses for drawing its request, the corresponding distribution instance
has an optimum objective value at moasgt which is the target value we aim for.

In the following sections, we illustrate all our proofs in the i.i.d model with unknown distribution and it is easy to

convert them to proofs for the adversarial stochastic input model.

4 Mixed Covering-Packing and Online Resource Allocation

4.1 Mixed Covering-Packing

In this section, we consider the mixed packing-covering problem stated in Secfion 2.3. and prove Theorem 6. We restate
the LP for the mixed covering-packing problem here.

Vi, Z a(i, j, k)xzjr < ¢
Jik

Vi, Y b(i, g k)aje > d;

Jik
vj7zxj,k S ]-7
k
Vi k,xjr>0.

The goal is to check if there is a feasible solution to this LP. We solve a gap version of this problem. Distinguish between
the two cases with a high probability, say- ¢:

YES: There is a feasible solution.
NO: There is no feasible solution even if all of thés are multiplied byl + € and all of thed;’s are multiplied byl — .

For convenience of description, we refer to the quantities indexedasyrequests, those indexeddgs resources
and those indexed byas options. The parametefor this problem is defined by = {M} {Z’J—x]}
byas op P te P by = max < o P .

-1 i

As before, the algorithm proceeds in steps. In each step, the algorithm samples a request uniformly at random from
the total ofm possible requests. We will prove that if the number of samples @(%W), then the algorithm
solves the gap version with probability at legst— §). Since the time taken for serving any given request is one (by

taking the time consumed by a single oracle call to be one), this proves that the total run-e’i 5(2"/6))). This
proves Theoren|6.



Let X!, X!, S! be as defined in Sectidr) 3. L&t’ be the random variable indicating the amount of demand
satisfied during step, that is,Y;! = (i, j, k) if in stept, requestj was chosen and was served using opfiorL_et

Y denote the amount of demarndsatisfied during step by the optimal algorithm for the distribution instance of
this problem. LetV,” = ST Vi Let¢! = n.(1 + Q)W 1+

st wheren. = (1+§)” (4555 Let

v e
¥ = na(1 = $)7% (1= 55)7", whereng = (1 — §)~ (727 Leto! = 37, ¢f, lety! = 32, vf andd® = ¢' + .
As before, we lets? = 0 andV;? = 0. The algorithm is as follows.

ALG Packing-Covering Given requesj in stept + 1, use the option

Z¢§a(ij, k) 1 wab(l 7. k)
) C () S

i i

arg mkin

(1 + 2'y€m

At the end ofT steps, the algorithm checksiifax; SCT < L(1+ %) and ifmin, ‘ZIT > L(1-£). If true, the

m

algorithm answer¥ ES. Else it say&NO. We now proceed to prove that whenever the real answieEg; the algorithm
saysYES with a high probability. Lemmgs 11 apd]12 prove this case.

2ym

Lemma 11 For a YES instanceE [®7] < 0.

Proof: Similar to the proof of Lemmp]8, we have

(38 L0 )
t+1 t .
D T (e

E [0+ [¢f, ¢t foralli] < quf( 2”’”) +Zw’( ] ) —
(ram) (- 5)
where the inequality follows from the fact that, when the real answer is YES!]| < o andE[Yfit] > 4 for all i.

Since the above sequence of inequalities holds for eyehe lemma followsO

Lemma 12 For a YES instance

r T T
Pr {mlaxs;i > E(l + ;)} + Pr [miin ‘21 < E(l - ;)} < o0

Proof: As in proof of Lemma 10

st T T
Pr [max’ > —(1+ 6)} < Pr [¢ > } < E[¢p7]
ioGoom 2 Ne — Me
where the inequality in the first line follows fromf < ¢ for all i, and the next line follows from Markov's inequality.
Similarly, we have

Pr [min ‘;iT <Ta- 6)} <Pr [wT > } <E[y’]

i i Tm 2 Nd Nd

Thus the sum of these probabilities is at mB&” | + E[y7] = E[®”], which is at mos®® from Lemmg 110

Observe thath?, the failure probability equala (Uc( )" + na( 2;m)T), which is upper bounded by
(exp (16'ym) + exp (g;if)) If T = O(2™5(/9)) we have the failure probability to be at mast Thus

10



Lemma[I2 proves that the algorithALG Packing-Covering saysYES with a probability at least — § when the
real answer i&¥ES.

We now proceed to prove that when the real answai(s our algorithm say®NO with a probability at least — 4,
ie.,

Lemma 13 For aNO instance, ifl" > @(%2(”/5)), then

T T T T
Pr m?x%<a(1+§)&miin‘2i >E(1—§) <

Proof: Let .S denote the set of requests sampled. Consider the following LP.

minimize A (1)
. a‘(imja k)x]k T
Vi, \A— Z — e >
jeSk Ci m
ViA+ Z b(i J, ing; z
jES kK m

VjGS,Z‘fj’k <1
k
Vj,k,xj,k 20

A>0.

If the above LP has an optimal objective value at Ie§n§t then our algorithm would have declar&D. We

now show that by picking” = @(M) the above LP will have its optimal objective value at Ie§§t with a
probability at leasi — §. This makes our algorithm answiO with a probability at least — ¢.
Consider the dual of LF[1):

maximizez B; + % Z(Pi — ) 2

jes %

VjeSk B < Z ( chJf) _pib(i,J}k))
Z(ai—f‘[)z‘) <1

Viaaiapi >0
VjES,ﬁj > 0.

The optimal value of LP[{1) is equal to the optimal value to [P (2), which in turn is lower bounded by the value of
LP (2) at any feasible solution. One such feasible solutiarti$3*, p*, which is the optimal solution to the full version

of LP (3), namely the one with = [m], T = m. Thus, the optimal value of LIP](1) is lower bounded by value of[P (2)
ata*, 8, p*, which is

= > B+ Zpl—a 3)

JES

For proceeding further in lower boundirg (3), we apply Chernoff boun@}gs B;. In order to get useful Chernoff
bounds, we first prove thak; resides in a small interval. Consider the full version of LP (2), Se= [m] andT = m.

In this version, since accordlng to the second constraint the optimal solution must $afigfy + p;) < 1, it follows
that0 < 87 < v according to the first constraint. Further, t€tdenote the optimal value of the full version of L[} (2).
Recall that since we are in ti€O caser* > e. Now, because of the constraii, (a; + p;) < 1, it follows that

11



>i(p; —aj) > —1 and thus it follows thad _; 37 < 7* + 1 < 2max(7*,1). We are now ready to lower bound the
quantity in [3). We have the optimal solution to R (2)

T
S8+ (3 - ai)

JES

T8 \/2T(Zj B5)yIn(1/6) N % 3 (r —aj) <sinceﬁ; € [O,ﬂ>

)

v

m m

(4)

Tr \/4Tmax(7’*,1)71n(1/5)
m m

where the second inequality is a “with probability at lelastd” inequality, i.e., we apply Chernoff bounds @jes B,
along with the observation that eagh < [0,]

We now setl” so that the quantity irf {4) is at Iea%lf;. Noting thatr* > ¢, setting?’ = @(%2(”/6)) will ensure
this inequality and hence proves the lemma.

Lemmag T]I[ 72 and 13 prove that the gap-version of the mixed covering-packing problem can be solved in time
O(2m1o5(/]) 'thus proving Theorefi 6.

5 Online Algorithms with Stochastic Input

In this section, we use the potential function based algorithm to solve the online version of the resource allocation
problem introduced in Sectign 2.2. The following LP describes the resource allocation problem.

maximize » " w; xa; k St (5)
gk

v iv Z a’(ia ja k)xj,k <g¢

7,k
vjazxj,k S 17

k
Vjvkvxj,k Z 0.

Our algorithm computes increasingly better estimates of the objective value by computing the optimal solution for the
observed requests, and uses it to guide future allocations. This is similar to the algorithm in [AWYQ09], except that we
only need to estimate the value of the optimal solution as against the entire solution itself. Through Lefnmds ]14 and 15,
we show that our algorithm achieves a competitive ratid ef O(e) thus proving Theoreth|2. We assume that the
number of requests: is known in advance. Algorithir] 1 describes our algorithm.

The firstem requests are not served but used just for computational purposes. After these: fiessjuests, the
algorithm proceeds ihstages, namel§, 1, ..., [ — 1, wherel is such that2! = 1 ande is a positive number between
0 and 1 that the algorithm designer gets to choose. In stalge algorithm serves. = em?2” requests. Note that the
stager consists of all stepse (¢,,t,41].

Let W* denote the optimal solution to the distribution instance of the problemXldte as defined in Secti@ 3.
Let Y* be the amount of profit earned during stepe.,Y* = w; 4, if in stept, requestj was served using optioh
Instead of the usuafl?, we now define5!(r) = ZZ:”H X}, which is the sum oX*'s till ¢ for u’s belonging to stage
r alone, i.e.u € (t.,t,11]. Similarly, Vi(r) = > Y. Let wmax = max; j wj k.

t
u=t,.+1
The potential function for constrainin stept whent € (¢, + 1,t,41] is defined by

st(r)

8 = ne(r) (1 + eolr) T (1+ ”) o
Ne(r) = (14 eo(r)) "o,

12



Algorithm 1 : Algorithm for stochastic online resource allocation
1: Initialize tg : tg <« [em],
2: forr=0tol —1do
3 fort=t.+1tot,4q do
4: if t=¢,.+ 1then
5 If the incoming request ig, use the following optiork:

- ec(r)/y init . @15 7, k) €o(r)/Wmax ,init i
argmn m 2 AT (1 - =zn) obj ()10 k

ym g WnaxM
6: For all, Si(r) = X}, andV*(r) = Y.
7: else
8: If the incoming request i, use the following optiork:

: ec(r)/y -1 a(i, g, k) €o(r)/Wmax 41
T (1 + ﬂ) Zd)? @ (1 — eo(r)Z(r)> Dobj Wik
ym z Wmax M

o: Foralli, St(r) = SI'(r) + X}, and,Vi(r) = Vi1 (r) + Y.
10: end if
11:  end for
12: end for

eo(r) = \/4’ymln((n +1)/6)

by

Similarly, the potential function for objective at stefs,

= <1 _ %“)Z(”>t"'_t7

Dobj = Mobj(7) (1 — €(r)) wmax T

trZ(r)

Nobj(r) = (1 — €o(r)) ) mina

_ [2wmaxmIn((n 4+ 1)/9)
€(r) = L2 .

Whent = t, + 1, which is a special case marking the beginning of a new stage, the potential function for congtraint

defined by
t,
oir(r) =matr) (14 )

and the potential function for the objective function is given by

(1) = () (1 _ “Z“) |

WmaxMM

Note that apart from constants, the only difference betwgén ande.(r) is that instead ofy, €,(r) haswmax/Z(r).

The valueZ (r), as we define below, gets progressively updated, but within a singlesstageins the same. After stage

r, the algorithm computes the optimal objective valu¢o the following instancé&,.: the instancé,. has the,. requests

of stager, and the capacity of resouréés W i.e., the capacity of resources are scaled down according to the
number of requests by a factor &f, along with a slight extra allowance by a factor(dft e.(r)). It usese, to compute

the valueZ(r 4 1) to be used in the potential function for objective in stage 1.

13



Lemma 14 With probability at least — 26,
t,W*(1 —e.(r)) .. < t,W*(1 4 2¢.(r))

Cr
m m

Proof: Our goal is to establish bounds ep, which is the optimal solution to the instan€e. For this we consider

the distribution instance of the following instangg this instance is the same s, except that each resourécdas

a capacity oft,.c;/m instead oft,.c;(1 + e.(r))/m. We denote this distribution instance Bf by D(Z}). Let p,. be

the objective value obtained by the algorithm Pure-random on the insfangee., the objective value obtained by
following the allocation used by the optimal solutionﬂx(fr). Since the resource usage and objective value obtained

by the algorithm Pure-random can be seen as the sum of i.i.d random variables, we can apply Chernoff bounds on them.
With a probability at least — §, Pure-random’s usage of resouticeill be within a factor of(1 + €.(r)) of < and

Pure-random’s objective value will fall short fiv’* /m (which is the optimal objective value fdb(Z,.)) by a factor of

at most(l — \/Qw‘“a*”;lr‘}(,(fﬂ)/‘;)) . Since the instancg, allows for this extra resource usage by having an additional

capacity by a factor ofl + e.(r)) as compared t,., the real excess resource usage occurs only with probability
Thus, with probabilityl — ¢, resources are consumed within capacity and the objective yaligeat least

o > t,W* 1_\/2wmaxmln((n—|—1)/5)

m t, W
t.W*(1 —e.(r))

m
The solution obtained by Pure-random is just a feasible solutioff,foand thusp,. is smaller than the optimal
objective value fofZ,., which ise,.. Thus, with probability more thah— §, we have,

L = elr)

(6)

Cr

We now get an upper-bound ep. To do this, we consider the LP which defings along with its dual. The LP which
definese, is given by:

maximize Z W) kT4 k (7)
JET,

Vi, Y ali,j k) <

JEL Kk

Vi€L,y wik <1
k
VjETL, kx> 0.

trci(1+ e(r))

Consider the dual of LF[7)

N tr(1+ ec(r))
m|n|m|zeZ B+ T(Z a;¢;) (8)
JEL, i
Vi€Tk, B+ ali,j,k)ai > wik
N ’i, (67 > 0
VjeI., B >0.

The optimal value of LP§{7) anfl](8) are the same and equal.tdo upper bound,., we now write down the LP
for the distribution instance and its dual. The LP for distribution instance is given by

14



maximize » ~ mp;w; k. 9)
ik

v ia Z mpja(iv jv k)xj,k S C;

k
Vj, k,xzjr > 0.

and its dual (written using a dual multiplier ofp; 3, instead of jusp;) is given by

minimize» " mp;B; + > _ aic; (10)

J

V j, k, mp;B; + mp; (Z a(i, J, k)%‘) = MP;w; g

\ i, (67 > 0
Note that the set of constraints in LP[10) is a superset of the set of constraintgih LP (8). Thus any feasible solution

to LP (10) is also feasbile to LP](8), and in particular, the optimal solution t¢ LP (10) giveti'byanda;’s is feasible

for LP (8). So the optimal value, of LP (8) is upper-bounded by its value at the solution constituted by tseand
a;’s.
The value of LP[(B) at*, 3* is equal to

S ;4 D) Zac, (11)

JEL,

To upper bound the expression jn(11), we apply Chernoff bounds for, 535 Notice that by the constraints of

LP (I0), and by the fact that it is a minimization LP, we gt < wWimax. Usmg th|s we upper bound the expression
in (I1)) (and hence,) as

_Zﬁ+ 1+€c Zaq

JE€L,

<t, ijﬁ + 4t( ij YWmax In(1/8) + 1+€° Za i)

< tTW* n 2t, W* ec(r).

m m

where the first inequality is a “with probability at ledst- §” inequality, i.e., we apply Chernoff bounds @JEL B;
along with the observation that: < wnax. The second inequality follows from noting that, mp; 87 + >_, aj¢; =
W*. This is becaus&/ * is the optimal value of the distribution instance and hence its dual too.

Thuse, < W"(t2¢() with probability at least — 4.

Thus we have proved that the upper bound and the lower bouig baold with probabilityl — § each and hence
together with a probability at least— 2. This proves the lemmau

Using these:,.’'s, we define outZ(r + 1) as follows:

me,

Z(r+1)= 7%(1 200
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Using the bounds oa, in Lemm, we note tha(r+1) < W* and thatZ(r+1) > %F(f;” > W*(1—3e.(r)).

Thus with probability at least — 21log(1/¢)d, Z(r) satisfies these bounds for all Given the bounds o&(r), we use
Lemm to see that with a probability at leastd, the objective value achieved in stagis at Ieastﬂ( (1)),
and the amount of resouréeonsumed in stageis at most’=<: (1 + €.(r)). Hence, these bounds are true formWith
probability at least — log(1/¢€)d, since the total number of ¢ stages: log(1/¢).

The total failure probability is upper bounded by the sum of the failure probability during estimati&{m pthrough
e, given by2log(1/¢)d and the failure probability of our algorithm in all stages together givelopyl /¢)d. Thus, the
total failure probability is at mostlog(1/¢)J.

With a probability of1 — 31log(1/€)d, the algorithm obtains an objective value of at least

A Z(r) (1 — eo( )

)

i

and for each, the amount of resourgeconsumed is at most

= tyci(1 —|—ec trei(1+ ec(r))

*M

On settingy = O( andd = the above equations can be simplified to the following lemma.

log(n/s)) log(1/€)’

Lemma 15 With probability higher thari — O(e), the objective value achieved at the completion of the algorithm is at
leastW*(1 — O(e)) and no resource is consumed more than its capacity.

) and hence

Thus Lemm@% proves that, our algorithm achieves a competitive ratib-efO(¢)) for v = O(ﬁ

proves Theorein|2.

6 Adwords in i.i.d setting

In this section, we give a simple proof of TheorE}n 5: greedy algorithm achieves a competitive fdtie dfe) in the
adwords problem, where the impressions come from an adversarial stochastic input model. As before, we illustrate our
proofs for the i.i.d model with unknown distribution below. We now briefly describe the adwords setting.

Setting. There are a total of advertisers, and queries arrive online, from some pool of queries. Let the (unknown)
number of queries that arrive be. The queries that appear each day are drawn i.i.d from some unknown distribution.
Advertiseri bids an amounk;; on query;. Advertiser; has a budgeB; denoting the maximum amount of money that
can be spent on a given day. The bid amouptsre revealed online as the queries arrive. The objective is to maximize
the sum of the bid amounts successfully allocated, subject to budget constraints. Wheneverjaqiwy, with a bid
amountb;; > remaining budget of, we are still allowed to allot that query to advertigebut we only earn a revenue
of the remaining budget af and not the total valuk;;.

Goel and Mehta [GM08] prove that the greedy algorithm givés a 1/¢) approximation to the adwords problem
when the queries arrive in a random permutation or in i.i.d, but under an assumption which almost gets down to bids
being much smaller than budgets. We give a much simpler proof(foral /e) approximation by greedy algorithm for
the i.i.d unknown distributions case, and our proof works irrespective of the the relation between the size of the bids and
the budgets involved.

Let p; be the probability of query appearing in any given impression. Lgt= mp,. Letz;; denote the offline
fractional optimal solution for the distribution instance. Let(t) denote the amount of money spent by advertiser
at time step, i.e., for thet-th query in the greedy algorithm (to be described below). f:60) = >, b;;x;;y;. Let
fi(t) = fi(0) — Z _yw;(r). Let f(¢t) = Y1, fi(t). Note thatf;(0) is the amount spent byin the offline fractional
optimal solution to the distribution instance.

Consider the greedy algorithm which allocates the qyeayriving at timet to the advertiser who has the maximum
effective bid for that query, i.egrgmax min{b;;, B; — Zi;ll w;(r)}. We prove that this algorithm obtains a revenue
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of (1 —1/e) >, ; bijxijy; and thus gives the desirad- 1/e competitive ratio against the fractional optimal solution

to the distribution instance. The proof is similar to the proof we presented in L§rhma 8 for the resource allocation
problem. Consider a hypothetical algorithm that allocates queries to advertisers according s thée prove that this
hypothetical algorithm obtains an expected revenu@ efl/e) >, ; b;;x;;y;, and argue that the greedy algorithm only

performs better. Lew (¢) and f{b(t) denote the quantities analogousidgt) and f;(t) for the hypothetical algorithm,
with the initial valuef;*(0) = fi(0) = 3, bijzi;y;. Let f(t) = Y21, f}(t). Let EXCEED(t) denote the set of aji

such thab;; is strictly greater than the remaining budget at the beginning of time steynelyb;; > B; ZT Lwh(r).

Lemma 16 E[w!(t)|f}(t —1)] > f(t=1)

m

Proof: The expected amount amount of money spent at timetsismiven by
Elw" hey _ L h ijJJ L Tid)
ol -l= 3 (e Tule) By S g, 12)
JEEXCEED; (t) r=1 J¢EXCEED; (t)

If Z TijYj >1, then by),
JEEXCEED; (1)

w; h L b hit —
E[w?(t)|flh(t— 1)] B 27 1 ( ) Z fz (0) 27':1 ’L( ) _ fz (t 1)

m m m

Suppose on the other hand Y z;;y; < 1. We can writeE[w! (¢)| f}(t — 1)] as
JEEXCEED; ()

h t—1 Lo
T R D VN R R WA (a9
JEEXCEED; (¢) =1

Sinceb;; < B;, and > z;;y; < 1, (I3) can be simplified to
JEEXCEED; (t)

h lwh(r
E[’LUTh(t)‘th(t _ 1)] > fz (O) _ Zr:l 1( )

i
Lemma 17 The hypothetical algorithm satisfies the followirfgf" (¢)| f*(t — 1)] < f*(t — 1)(1 — 1/m)
Proof: From the definition off(¢), we have

B OG- = f—1) - Bl - D] < [ - 10 - ),

where the inequality is due to Lemina 16. Summing ovei gives the Lemmald
Lemma 18 E[GREEDY] > (1 —1/e) >, ; bijzi;y;

Proof: Lemmg 17 proves that for the hypothetical algorithm, the value of the differghge- 1) — E[f"(¢)| f"(t — 1)],
which is the expected amount spent at timby all the advertisers together, conditioned gt — 1), is at least

w. But by definition, conditioned on the amount of money spent infitsi steps, the greedy algorithm earns the
maximum revenue at time step Thus, for the greedy algorithm too, the statement of the lenrna 17 must hold, namely,
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E[f()|f(t—1)] < f(t—1)(1—1/m). This means thdE[f(m)] < f(0)(1 —1/m)™ < f(0)(1/e). Thus the expected
revenue earned is

E} w(r)] = f(0)—E[f(m)]

F0) (1 =1/¢)
(1 - 1/6) mexljyj

v

and this proves the lemmal
Lemmd 18 proves Theorgm 5.

7 Applications

We now list the problems that are special cases of the resource allocation framework and have been previously consid-
ered.

7.1 Adwords Problem

While in Sectiol we noted that we could gédt-a 1/e approximation to the adwords problem with unbounded
we note here that whenis small, i.e.max; ; %J <0 (ﬁ) we get al — O(e) approximation to the maximum
profit through the resource allocation framework.

7.2 Display Ad Allocation

The following problem occurs in the allocation display ad and is rather similar to the Adwords problem. Here,
there arempressionghat arrive online and have to be allocated to advertisers. Each advéhisen value;; for each
impressionj. The difference is that in this case, the advertisers have a bound on theuothérof impressions that

they can be allocated to. The objective is to maximize the total value of the allocation. The LP formulation for this
problem fits directly in our resource allocation framework.

7.3 Network Routing and Load Balancing

Consider a graph (either undirected or directed) with edge capacities. Requests arrive online; g reansasts of a
source-sink paifis;, t;) and a bandwidtl;. In order to satisfy a request, a capacitypmust be allocated to it on every

edge along some path from to ¢; in the graph. In theongestion minimizatiowersion, all requests must be satisfied,

and the objective is to minimize the maximum (over all edges) congestion, which is the ratio of the allocated bandwidth
to the capacity of the edge. In thieroughput maximizatiowersion, the objective is to maximize the number of satisfied
requests while not allocating more bandwidth than the available capacity for each edge. (Different requests could have
different values on them, and one could also consider maximizing the total value of the satisfied requests.) Both the
congestion minimization version and the throughput maximization version can be solved through our a[gorithm 1 for
resource allocation framework. Kamath, Palmon and Plotkin [KPP96] considered a variant of this problem with the
requests arriving according to a stationary Poisson process, and show a competitive ratio that is very similar to ours.

7.4 Combinatorial Auctions

Suppose we have items for sale, withe; copies of itemi. Bidders arrive online, and biddgrhas a utility function

Uj : 2["l — R. If we posted pricep; for each item, then bidderj buys a bundles that maximized/;(S) — > ;g Pi-

We assume that bidders can compute such a bundle. The goal is to maximize social welfare, the total utility of all the
bidders, subject to the supply constraint that there are grippies of itemi. Firstly, incentive constraints aside, this

6These are shown on web sites, as opposed to search ads that are shown on search engines and were the motivation for the Adwords problem.
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problem can be written as an LP in the resource allocation framework. The items are the resources and agents arriving
online are the requests. All the different subsets of items form the set of options. Thelitlity represents the profit

wj.g Of serving ageny through optionS, i.e. subsef. If an itemi € S, thena; ; s = 1 for all j and zero otherwise.
Incentive constraints aside, our algorithm for resource allocation at stéfy choose the optiort: (or equivalently the
bundleS) as specified in point 4 of algorithjn} 1, i.e., minimize the potential function. That can be equivalently written
as,

60(71)/u)max t— 1(1 1 ]7
arg ma. e
e (1 - eo<r>Z<r>> oy ik~ (1 + c<r ) Zd}
WmaxMM ym
Now, maximizing the above expression is the same as picking thenaximizew; ,, — > . p;a(i, j, k), where
_ee(n)/y
G N

Di =

€0 (1) /Wmax
(1- =@z ¢obj

Wmax M

(&

Thus, if we post these prices on items, agents will do exactly what the algorithm would have done otherwise. Suppose
that the bidders are i.i.d samples from some distribution (or they arrive as in the adversarial stochastic input model). Here
~v = 1/min;{c;} and we can use Theore@ 2 to get an incentive compatible posted price [amiﬂmra competitive

ratio of 1 — O(e) whenevemin;{¢;} > O (%) . Further if an analog of Theor(:ﬂ 2 also holds in the random

permutation model then we get a similar result for combinatorial auctions in the offline case: we simply consider the
bidders one by one in a random order.

7.5 Selective Call-out

Chakraborty et. al.| [CEDG10] formulated the following problem that arises in the design of an ad-exchange. An
exchange getad-requestonline; each ad-request may have multiple slots with differpralities Whenever the
exchange gets an ad-request, it calls out to a subset of ad-networks for a bid. Given the bids it then allocates the slots
to the highest bidders. The ad-networks have constraints on how frequently they want to be called out. In addition,
the following assumptions are made: the ad-requests are i.i.d samples from an unknown distribution, and for every ad-
network its values for all ad-requests of a certain type are i.i.d from a distribution that is known to the exchange. They
consider various objective functions, such as social welfare, revenue of a particular auction, GSP with reserve, and so
on. They state their results in the PAC model, where they use an initial sample of impressions to train their algorithm.
They give a bound on the number of samples needed in order talget dc — e competitive algorithm. We can use our
algorithms (with an approximate relaxation, Theofgm 4) to improve their results in the following two ways. Either we
are given the target objective value, in which case we achieve the same competitive ratio in the online setting without
the need for an initial sample. If we are not given the target objective value then we need an initial sample to estimate
that value. The number of samples we need is less than what is required by [QEPKY a factor ofn. Further, our
algorithm would also work in the adversarial stochastic input model.

8 Conclusion and Future Work

Our work raises the following open questions.

e As mentioned in the introduction, we can show that our algorithm works in the i.i.d model, so the natural question
is if our algorithm works for the random permutation model.

e Currently in our algorithm for the online case, we need to estimate the optimum objective function value periodi-
cally. For this we need to solve (at least approximately) an offline instance of the problem repeatedly. Is there an
algorithm that avoids this?

"Here we assume that each agent reveals his true utility funatienhe makes his purchase. This information is necessary to compute the prices
to be charged for future agents.
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e Perhaps the holy grail for an online algorithm for say, Adwords, is to get a guarantee of the following form: if
the input is i.i.d from some given distribution then get a competitive ratio that is close to 1, while simultaneously
getting a competitive ratio of — 1 /e if the input is adversarial. Our algorithm for Adwords (or some simple
variant) could actually achieve this. At the very least, can we get such a guarantee forbemiétehing with
different budgets? Note that when all the budgets are the same then our algorithm for the min-max version is
equivalent to a simple algorithm called BALANCE that achieves this. (This observation follows from the results
in Kalyanasundaram and Pruhs [KP00] and Motwani, Panigrahy and Xu [MP06].)

¢ A high level goal is to come up with other reasonable definitions that go beyond worst case. The motivation for
this is to bridge the gap between the theory and practice of online algorithms.
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