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Abstract

We present algorithms for a class of resource allocation problems both in the online setting with stochastic input
and in the offline setting. This class of problems contains many interesting special cases such as the Adwords problem.
In the online setting we introduce a new distributional model called the adversarial stochastic input model, which is
a generalization of the i.i.d model with unknown distributions, where the distributions can change over time. In this
model we give a1 − O(ε) approximation algorithm for the resource allocation problem, with almost the weakest
possible assumption: the ratio of the maximum amount of resource consumed by any single request to the total capacity

of the resource, and the ratio of the profit contributed by any single request to the optimal profit is at mostO
“

ε2

log(n/ε)

”
wheren is the number of resources available. There are instances where this ratio isε2/ log n such that no randomized
algorithm can have a competitive ratio of1 − o(ε) even in the i.i.d model. The upper bound on ratio that we require
improves on the previous upper-bound for the i.i.d case by a factor ofn.

Our proof technique also gives a very simple proof that the greedy algorithm has a competitive ratio of1− 1/e for
the Adwords problem in the i.i.d model with unknown distributions, and more generally in the adversarial stochastic
input model, when there is no bound on the bid to budget ratio. All the previous proofs assume that either bids are very
small compared to budgets or something very similar to this.

In the offline setting we give a fast algorithm to solve very large LPs with both packing and covering constraints.
We give algorithms to approximately solve (within a factor of1 + ε) the mixed packing-covering problem with
O( γm log(n/δ)

ε2
) oracle calls where the constraint matrix of this LP has dimensionn × m, the success probability

of the algorithm is1− δ, andγ is a parameter which is very similar to the ratio described for the online setting.
We discuss several applications, and how our algorithms improve existing results in some of these applications.
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1 Introduction

The results in this paper fall into distinct categories of competitive algorithms for online problems and fast approximation
algorithms for offline problems. We have two main results in the online framework and one result in the offline setting.
However they all share common techniques.

There has been an increasing interest in online algorithms motivated by applications to online advertising. The most
well known is theAdwordsproblem introduced by Mehta et. al. [MSVV05], where the algorithm needs to assign
keywords arriving online to bidders to maximize profit, subject to budget constraints for the bidders. The problem
has been analyzed in the traditional framework for online algorithms: worst-case competitive analysis. As with many
online problems, the worst-case competitive analysis is not entirely satisfactory and there has been a drive in the last few
years to go beyond the worst-case analysis. The predominant approach has been to assume that the input satisfies some
stochastic property. For instance therandom permutationmodel (introduced by Goel and Mehta [GM08]) assumes that
the adversary picks the set of keywords, but the order in which the keywords arrive is chosen uniformly at random. A
closely related model is thei.i.d model: assume that the keywords are i.i.d samples from a fixed distribution, which
is unknownto the algorithm. Stronger assumptions such as i.i.d samples from aknowndistribution have also been
considered.

First Result. A key parameter on which many of the algorithms for Adwords depend is the bid to budget ratio. For
instance in Mehta et. al. [MSVV05] and Buchbinder, Jain and Naor [BJN07] the algorithm achieves a worst case
competitive ratio that tends to1 − 1/e as the bid to budget ratio (let’s call itγ) tends to 0. (1 − 1/e is also the best
competitive ratio that any randomized algorithm can achieve in the worst case.) Devanur and Hayes [DH09] showed that
in the random permutation model, the competitive ratio tends to 1 asγ tends to 0. This result showed that competitive
ratio of algorithms in stochastic models could be much better than that of algorithms in the worst case. The important
question since then has been to determine the optimal trade-off betweenγ and the competitive ratio. [DH09] showed
how to get a 1-O(ε) competitive ratio whenγ is at mostO( ε3

n log(mn/ε) ) wheren is the number of advertisers andm is

the number of keywords. Subsequently Agrawal, Wang and Ye [AWY09] improved the bound onγ to O( ε2

n log(m/ε) ).
The papers of Feldman et. al. [FHK+10] and Agrawal, Wang and Ye [AWY09] have also shown that the technique of
[DH09] can be extended to other online problems.

The first main result in this paper is the following 3-fold improvement of previous results: (Theorems 2 - 4)

1. We give an algorithm which improves the bound onγ to O( ε2

log(n/ε) ) This is almostoptimal; we show a lower

bound of ε2

log(n) .

2. The bound applies to a more general model of stochastic input, called theadversarial stochastic inputmodel. This
is a generalization of the i.i.d model with unknown distribution, but is incomparable to the random permutation
model.

3. It applies to a more general class of online problems that we call theresource allocation framework. A formal
definition of the framework is presented in Section 2.2 and a discussion of many interesting special cases is
presented in Section 7.

Regarding the bound onγ, the removal of the factor ofn is significant. Consider for instance the Adwords problem
and suppose that the bids are all in [0,1]. The earlier bound implies that the budgets need to be of the order ofn/ε2

in order to get a1 − ε competitive algorithm, wheren is the number of advertisers. With realistic values for these
parameters, it seems unlikely that this condition would be met. While with the improved bounds presented in this paper,
we only need the budget to be of the order oflog n/ε2 and this condition is met for reasonable values of the parameters.
Furthermore, in the resource allocation framework, the current highest upper bound onγ is from Agrawal, Wang and
Ye [AWY09] and equalsO( ε2

n log(mk/ε) ). Herek is the number of available “options” (see Section 2.2) and in typical
applications like network routing,k could be exponential inn, and thus, the factor saved by our algorithm becomes
quadratic inn.

We note here that so far, all the algorithms for the i.i.d model (with unknown distribution) were actually designed for
the random permutation model. It seems that any algorithm that works for one should also work for the other. However

1



we can only show that our algorithm works in the i.i.d model, so the natural question is if our algorithm works for the
random permutation model. It would be very surprising if it didn’t.

One drawback of the stochastic models considered so far is that they are time invariant, that is the input distribution
does not change over time. The adversarial stochastic input model allows the input distribution to change over time.
The model is as follows: in every step the adversary picks a distribution, possibly adaptively depending on what the
algorithm has done so far, and the actual keyword in that step is drawn from this distribution. The competitive ratio
is defined with respect to the optimum fractional solution for anoffline instance of the problem, called thedistribution
instance, which is defined by the distribution. In Section 2.2, where we define the distribution instance, we also prove
that the optimal fractional solution for the distribution instance is at least as good as the commonly used benchmark
of expected value of optimal fractional solution, where the expectation is with respect to the distribution. A detailed
description of this model, how the adversary is constrained to pick its distributions and how it differs from the worst-case
model is presented in Section 2.2.

Second Result. Another important open problem is to improve the competitive ratio for the Adwords problem when
there is no bound onγ. The best competitive ratio known for this problem is1/2 in the worst case. Nothing better was
known, even in the stochastic models. (For the special case of online bipartite matching, in the case of i.i.d input with a
knowndistribution, recent series of results achieve a ratio of better than 1-1/e, for instance by Feldman et. al. [FMMM09]
and Bahmani and Kapralov [BK10]. The best ratio so far is .702 by Manshadi, Gharan and Saberi [MGS11]. The same
online bipartite matching has been recently studied in the random permutation model by Mahdian and Yan [MY11] and
by Karande, Mehta and Tripathi [KMT11]. The best ratio so far is0.696 by Mahdian and Yan [MY11].)The second
result in this paper is that for the Adwords problem in the adversarial stochastic input model, with no assumption on
γ, the greedy algorithm gets a competitive ratio of1 − 1/e against the optimal fractional solution to the distribution
instance (Theorem 5). The greedy algorithm is particularly interesting since it is a natural algorithm that is used widely
for its simplicity. Because of its wide use, previously the performance of the greedy algorithm has been analyzed by
Goel and Mehta [GM08] who showed that in the random permutation and the i.i.d models, it has a competitive ratio of
1− 1/e with an assumption which is essentially thatγ tends to 0.

Third Result. Charles et. al. [CCD+10] considered the following (offline) problem: given a lopsided bipartite graph
G = (L,R,E), that is a bipartite graph wherem = |L| � |R| = n, does there exist an assignmentM : L → R
with (j,M(j)) ∈ E for all j ∈ L, and such that for every vertexi ∈ R, |M−1(i)| ≥ Bi for some given valuesBi.
Even though this is a classic problem in combinatorial optimization with well known polynomial time algorithms, the
instances of interest are too large to use traditional approaches to solve this problem. (The value ofm in particular is
very large.) The approach used by [CCD+10] was to essentially design an online algorithm in the i.i.d model: choose
vertices fromL uniformly at random and assign them to vertices inR in an online fashion. The online algorithm is
guaranteed to be close to optimal, as long as sufficiently many samples are drawn. Therefore it can be used to solve the
original problem (approximately): the online algorithm gets an almost satisfying assignment if and only if the original
graph has a satisfying assignment (with high probability).

The third result in this paper is a generalization of this result to get fast approximation algorithms for a wide class
of problems in the resource allocation framework (Theorem 6). Problems in the resource allocation framework where
the instances are too large to use traditional algorithms occur fairly often, especially in the context of online advertising.
Formal statements and a more detailed discussion are presented in Section 2.3.

The underlying idea used for all these results can be summarized at a high level as thus: consider a hypothetical
algorithm calledPure-randomthat knows the distribution from which the input is drawn and uses an optimal solution
w.r.t this distribution. Now suppose that we can analyze the performance of Pure-random by considering a potential
function and showing that it decreases by a certain amount in each step. Now we can design an algorithm that does
not know the distribution as follows: consider the same potential function, and in every step choose the option that
minimizes the potential function. Since the algorithm minimizes the potential in each step, the decrease in the potential
for this algorithm is better than that for Pure-random and hence we obtain the same guarantee as that for Pure-random.

For instance, for the case whereγ is small, the performance of Pure-random is analyzed using Chernoff bounds.
The Chernoff bounds are proven by showing bounds on the expectation of the moment generating function of a random
variable. Thus the potential function is the sum of the moment generating functions for all the random variables that we
apply the Chernoff bounds to. The proof shows that in each step this potential function decreases by some multiplicative
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factor. The algorithm is then designed to achieve the same decrease in the potential function. A particularly pleasing
aspect about this technique is that we obtain very simple proofs. For instance, the proof of Theorem 5 is extremely
simple: the potential function in this case is simply the total amount of unused budgets and we show that this amount
(in expectation) decreases by a factor of1− 1/m in each step where there arem steps in all.

On the surface, this technique and the resulting algorithms1 bear a close resemblance to the algorithms of Young
[You95, You01] for derandomizing randomized rounding and the fast approximation algorithms for solving cover-
ing/packing LPs of Plotkin, Shmoys and Tardos [PST91], Garg and Könemann [GK98],Fleischer [Fle00]. In fact Arora,
Hazan and Kale [AHK05] showed that all these algorithms are related to the multiplicative weights update method for
solving theexpertsproblem and especially highlighted the similarity between the potential function used in the analy-
sis of the multiplicative update method and the moment generating function used in the proof of Chernoff bounds and
Young’s algorithms. Hence it is no surprise that our algorithm is also a multiplicative update algorithm. It seems that our
algorithm is closer in spirit to Young’s algorithms than others. A basic difference of our algorithm from this previous set
of results is that in all these works, every single iteration of the algorithm involves changing the entire solution vector
x, while our algorithm changes only a single coordinate of the vectorx per iteration. In other words, our algorithm uses
the special structure of the polytopePj in giving a more efficient solution. It is possible that our algorithm can also
be interpreted as an algorithm for the experts problem. In fact Mehta et. al. [MSVV05] asked if there is a1 − o(1)
competitive algorithm for Adwords in the i.i.d model with small bid to budget ratio, and in particular if the algorithms
for experts could be used. They also conjectured that such an algorithm would iteratively adjust a budget discount factor
based on the rate at which the budget is spent. Our algorithms for resource allocation problem when specialized for Ad-
words look exactly like that and with the connections to the experts framework, we answer the questions in [MSVV05]
in the positive.

Organization. The rest of the paper is organized as follows. In Section 2, we define the resource allocation framework,
the adversarial stochastic model and state our results formally as theorems. We also discuss one special case of the
resource allocation framework — the adwords problem and formally state our results. In Section 3, we consider a
simplified “min-max” version of the resource allocation framework and present the proofs for this version. The other
results build upon this simple version. In Section 4 we give a fast approximation algorithm for the mixed covering-
packing problem (Theorem 6). The1 − O(ε) competitive online algorithm for the resource allocation framework with
stochastic input (Theorem 2) is in Section 5. The1−1/e competitive algorithm (Theorem 5) for the Adwords problem is
in Section 6. Several special cases of the resource allocation framework are considered in Section 7. Section 8 concludes
with some open problems and directions for future research.

2 Preliminaries & Main Results

2.1 Resource allocation framework

We consider the following framework of optimization problems. There aren resources, with resourcei having a capacity
of ci. There arem requests; each requestj can be satisfied by a vectorxj that is constrained to be in a polytopePj .
(We refer to the vectorxj as an option to satisfy a request, and the polytopePj as the set of options.) The vectorxj

consumesai,j · xj amount of resourcei, and gives a profit ofwj · xj . Note thatai,j , wj andxj are all vectors. The
objective is to maximize the total profit subject to the capacity constraints on the resources. The following LP describes
the problem:

maximize
∑

j

wj · xj s.t.

∀ i,
∑

j

ai,j · xj ≤ ci

∀ j,xj ∈ Pj .

1 For the case of smallγ. It is not clear if this discussion applies to the case of largeγ, that is to Theorem 5

3



We assume that we have the following oracle available to us: given a requestj and a vectorv, the oracle returns

the vectorxj that maximizesv.xj among all vectors inPj . Let γ = max
({

ai,j .xj

ci

}
i,j
∪
{wj .xj

W∗

}
j

)
be the notion

corresponding to the bid to budget ratio for Adwords. HereW ∗ is the optimal offline objective to the distribution
instance, defined in Section 2.2.

The canonical case is where eachPj is a unit simplex inRK , i.e. Pj = {xj ∈ RK :
∑

k xj,k = 1}. This captures
the case where there areK discrete options, each with a given profit and consumption. This case captures most of the
applications we are interested in, which are described in Section 7. All the proofs will be presented for this special case,
for ease of exposition. The co-ordinates of the vectorsai,j andwj will be denoted bya(i, j, k) andwj,k respectively,
i.e., thekth option consumesa(i, j, k) amount of resourcei and gives a profit ofwj,k. For an example of an application
that needs more general polytopes see Section 7.5.

We consider two versions of the above problem. The first is an online version with stochastic input: requests are
drawn from an unknown distribution. The second is when the number of requests is much larger than the number of
resources, and our goal is to design a fast PTAS for the problem.

2.2 Online Algorithms with Stochastic Input

We now consider an online version of the resource allocation framework. Here requests arrive online. We consider
the i.i.d. model, where each request is drawn independently from a given distribution. The distribution is unknown
to the algorithm. The algorithm knowsm, the total number of requests. The competitive ratios we give for resource
allocation problems with boundedγ are with respect to an upper bound on the expected value of fractional optimal
solution, namely, the fractional optimal solution of the distribution instance, defined below.

Consider the followingdistribution instanceof the problem. It is an offline instance defined for any given distribution
over requests and the total number of requestsm. The capacities of the resources in this instance are the same as in the
original instance. Every request in the support of the distribution is also a request in this instance. Suppose requestj
occurs with probabilitypj . The resource consumption ofj in the distribution instance is given bympjai,j for all i and
the profit ismpjwj . The intuition is that if the requests were drawn from this distribution then the expected number
of times requestj is seen ismpj and this is represented in the distribution instance by scaling the consumption and the
profit vectors bympj . To summarize, the distribution instance is as follows.

maximize
∑

j in the support

mpjwj .xj s.t.

∀ i,
∑

j

mpjai,j .xj ≤ ci

∀ j,xj ∈ Pj .

We now prove that the fractional optimal solution to the distribution instance is an upper bound on the expectation of
OPT, where OPT is the offline fractional optimum of the actual sequence of requests.

Lemma 1 OPT[Distribution instance] ≥ E[OPT]

Proof: The average of optimal solutions for all possible sequences of requests should give a feasible solution to the
distribution instance with a profit equal toE[OPT]. Thus the optimal profit for the distribution instance could only be
larger.2

Thecompetitive ratioof an algorithm in the i.i.d model is defined as the ratio of the expected profit of the algorithm
to the fractional optimal profit for the distribution instance. The main result is that asγ tends to zero, the competitive
ratio tends to 1. In fact, we give the almost optimal trade-off.

Theorem 2 For any ε > 0, we give an algorithm such that ifγ = O
(

ε2

log(n/ε)

)
then the competitive ratio of the

algorithm is1−O(ε).

Theorem 3 There exist instances withγ = ε2

log(n) such that no algorithm can get a competitive ratio of1− o(ε).2

2 The proof of this theorem is obtained by a modification of a similar theorem for random permutations presented in [AWY09].
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Also, our algorithm works when the polytopePj is obtained as an LP relaxation of the actual problem.3 To be
precise, suppose that the set of options that could be used to satisfy a given request corresponds to some set of vectors,
sayIj . Let the polytopePj ⊇ Ij be anα approximate relaxationof Ij if for the profit vectorwj and for allxj ∈ Pj ,
there is an oracle that returns ayj ∈ Ij such thatwj .yj ≥ αwj .xj and for alli, ai,j .yj ≤ ai,j .xj . Given such an
oracle, our algorithm achieves a competitive ratio ofα−O(ε).

Theorem 4 Given a resource allocation problem with anα approximate relaxation, and for anyε > 0, we give an

algorithm such that ifγ = O
(

ε2

log(n/ε)

)
then the competitive ratio of the algorithm isα−O(ε).

Proof:(Sketch.) Consider the problem in the resource allocation framework defined by the relaxation, that is requestj
can actually be satisfied by the polytopePj . The optimal solution to the relaxation is an upper bound on the optimal
solution to the original problem. Now run Algorithm 1 on the relaxation, and when the algorithm picks a vectorxj to
serve requestj, use the rounding oracle to round it to a solutionyj and use this solution. Since the sequence ofxj ’s
picked by the algorithm are within1 − O(ε) of the optimum for the relaxation, and for allj wj .yj ≥ αwj .xj , this
algorithm isα(1−O(ε)) competitive.2

In fact, our results hold for the following more general model, theadversarial stochastic inputmodel. In each
step, the adversary adaptively chooses a distribution from which the request in that step is drawn. The adversary is
constrained to pick the distributions in one of the following two ways. In the first case, we assume that a target objective
value OPTT is given to the algorithm4, and that the adversary is constrained to pick distributions such that the fractional
optimum solution ofeachof the corresponding distribution instances is at least OPTT (or at most OPTT for minimization
problems). The competitive ratio is defined with respect to OPTT . In the second case, we are not given a target, but the
adversary is constrained to pick distributions so that the fractional optimum of each of the corresponding distribution
instances is the same, which is the benchmark with respect to which the competitive ratio is defined.

Note that while the i.i.d model can be reduced to the random permutation model, these generalizations are incom-
parable to the random permutation model as they allow the input to vary over time. Also the constraint that each of the
distribution instances has a large optimum value distinguishes this from the worst-case model. This constraint in general
implies that the distribution must contain sufficiently rich variety of requests in order for the corresponding distribution
instance to have a high optimum. To truly simulate the worst-case model, in every step the adversary would chose a
“deterministic distribution”, that is a distribution supported on a single request. Then the distribution instance will sim-
ply havem copies of this single request and hence will not have a high optimum. For instance consider online bipartite
b-matching where each resource is a node on one side of a bipartite graph with the capacityci denoting the number of
nodes it can be matched to and the requests are nodes on the other side of the graph and can be matched to at most one
node. A deterministic distribution in this case corresponds to a single online node and if that node is repeatedm times
then the optimum for that instance is just the weighted (byci) degree of that node. If the adversary only picks such
deterministic distributions then he is constrained to pick nodes of very high degree thus making it easy for the algorithm
to match them.

We refer the reader to Section 7 for a discussion on several problems that are special cases of the resource allocation
framework and have been previously considered. Here, we discuss one special case — the adwords problem.

2.2.1 The Adwords problem

In the i.i.dAdwordsproblem, there aren bidders, and each bidderi has a daily budget ofBi dollars. Keywordsarrive
online with keywordj having an (unknown) probabilitypj of arriving in any given step. For every keywordj, each
bidder submits a bid,bij , which is the profit obtained by the algorithm on allocating keywordj to bidderi. The objective
is to maximize the profit, subject to the constraint that no bidder is charged more than his budget. Here, the resources are
the daily budgets of the bidders, the requests are the keywords, and the options are once again the bidders. The amount
of resource consumed and the profit are bothbij .

For this problem, with no bounds onγ, we show that the greedy algorithm has a competitive ratio of1 − 1/e. For
our results for the adwords problem with boundedγ, see Section 7.1

3 There may be trivial ways of definingPj such that its vertices correspond to the actual options. The motivation for allowing non-trivial relaxations
is computational: recall that we need to be able to optimize linear functions overPj .

4 In this case, we requireγ = max

„n
ai,j .xj

ci

o
i,j

∪
n

wj .xj

OPTT

o
j

«
, i.e., OPTT takes the place ofW ∗ in the definition ofγ.
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Theorem 5 The greedy algorithm achieves a competitive ratio of1 − 1/e for the Adwords problem in the adversarial
stochastic input model with no assumptions on the bid to budget ratio.

We note here that the competitive ratio of1− 1/e is tight for the greedy algorithm [GM08]. It is however not known to
be tight for an arbitrary algorithm.

2.3 Fast algorithms for very large LPs

Charles et al. [CCD+10] consider the following problem: given a bipartite graphG = (L,R,E) wherem = |L| �
|R| = n, does there exist an assignmentM : L → R with (j,M(j)) ∈ E for all j ∈ L, and such that for every vertex
i ∈ R, |M−1(i)| ≥ Bi for some given valuesBi. They gave an algorithm that runs in time linear5 in the number of

edges of an induced subgraph obtained by taking a random sample fromR of sizeO
(

m log n
mini{Bi}ε2

)
, for a gap-version of

the problem with gapε. Whenmini{Bi} is reasonably large, such an algorithm is very useful in a variety of applications
involving ad assignment for online advertising.

We consider a generalization of the above problem (that corresponds to the resource allocation framework). In
fact, we consider the following mixed covering-packing problem. Suppose that there aren1 packing constraints, one
for eachi ∈ {1..n1} of the form

∑m
j=1 ai,jxj ≤ ci andn2 covering constraints, one for eachi ∈ {1..n2} of the form∑m

j=1 bi,jxj ≥ di. Eachxj is constrained to be inPj . Does there exists a feasible solution to this system of constraints?
The gap-version of this problem is as follows. Distinguish between the two cases, with a high probability, say1− δ:

YES: There is a feasible solution.

NO: There is no feasible solution even if all of theci’s are multiplied by1 + ε and all of thedi’s is multiplied by1− ε.

We note that solving (offline) an optimization problem in the resource allocation framework can be reduced to the above
problem through a binary search on the objective function value.

Suppose as in [CCD+10] thatm is much larger thann. Assume that solving the following costs unit time: givenj
andv, find xj ∈ Pj that maximizesv.xj . Let γ = max{i ∈ [n1], j ∈ [m] : ai,j .xj

ci
} ∪ {i ∈ [n2], j ∈ [m] : bi,j .xj

di
}.

Theorem 6 For any ε > 0, there is an algorithm that solves the gap version of the mixed covering-packing problem

with a running time ofO
(

γm log(n/δ)
ε2

)
.

Applications to online advertising:
The matching problem introduced by [CCD+10] was motivated by the problem of computing the available inventory

for display ad allocation (see the original paper for details). In fact, the matching problem was a simplified version of
the real problem, which fits into the resource allocation framework. Moreover, such algorithms are used in multiple
ways. For instance, although the technique of Devanur and Hayes [DH09] was originally designed to solve the purely
online problem, it can be used in the PAC model where the algorithm can make use of a prediction of the future arrival
of requests (see for instance Vee, Vassilvitskii and Shanmugasundaram [VVS10]). The key technique is to formulate
an LP relaxation of the problem and learn the optimal dual variables using the prediction, and these duals can then be
used for the allocation online. Even if the prediction is not entirely accurate, we note that such an approach has certain
advantages. This motivates the problem of finding the optimal duals. We observe that our algorithm can also be used to
compute near optimal duals which can then be used to do the allocation online. Many problems (for instance the Display
ad allocation problem) can benefit from such an algorithm.

A similar approach was considered by Abrams, Mendelevitch and Tomlin [AMT07] for the following problem
motivated by sponsored search auctions: for eachqueryj, one can show an advertiser in each of theK slots. Each
advertiseri bids a certain amount on each queryj, and has a daily budget. However, the cost to an advertiser depends
on the entire ordered set of advertisers shown (called aslate), based on the rules of the auction. Given the set of queries
that arrive in a day (which in practice is an estimate of the queries expected rather than the actual queries), the goal
is to schedule a slate of advertisers for each query such that the total cost to each advertiser is within the budget and
maximize a given objective such as the total revenue, or the social welfare. This problem is modeled as an LP and
a column-generation approach is suggested to solve it. Also, many compromises are made, in terms of limiting the
number of queries, etc. due to the difficulties in solving an LP of very large size. We observe that this LP fits in the
resource allocation framework and thus can be solved quickly using our algorithm.

5In fact, the algorithm makes a single pass through this graph.
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Chernoff bounds. We present here the form of Chernoff bounds that we use throughout the rest of this paper. Let
X =

∑
iXi, whereXi ∈ [0, B] are i.i.d random variables. LetE[X] = µ. Then, for allε > 0,

Pr[X < µ(1− ε)] < exp
(
−ε2µ
2B

)
.

Consequently, for allδ > 0, with probability at least1− δ,

X − µ ≥ −
√

2µB ln(1/δ).

Similarly, for all ε ∈ [0, 2e− 1],

Pr[X > µ(1 + ε)] < exp
(
−ε2µ
4B

)
.

Consequently, for allδ > exp(−(2e−1)2µ
4B ), with probability at least1− δ,

X − µ ≤
√

4µB ln(1/δ).

3 Min-Max version

In this section, we solve a slightly simplified version of the general online resource allocation problem, which we call
the min-max version. In this problem,m requests arrive online, and each of them must be served. The objective is to
minimize the maximum fraction of any resource consumed. (There is no profit.) The following LP describes it formally.

minimizeλ s.t.

∀ i,
∑
j,k

a(i, j, k)xj,k ≤ λci

∀ j,
∑

k

xj,k = 1,

∀ j, k, xj,k ≥ 0.

For ease of illustration, we assume that the requests arrive i.i.d (unknown distribution) in the following proof. At the
end of this section, we show that the proof holds for the adversarial stochastic input model also.

The algorithm proceeds in steps. Letλ∗ denote the fractional optimal objective value of the distribution instance
of this problem. LetXt

i be the random variable indicating the amount of resourcei consumed during stept, that is,
Xt

i = a(i, j, k) if in step t, requestj was chosen and was served using optionk. Let ST
i =

∑T
t=1X

t
i be the total

amount of resourcei consumed in the firstT steps. Letγ = maxi,j,k{a(i,j,k)
ci
}, which implies that for alli, j andk,

a(i, j, k) ≤ γci. Let φt
i = (1 + ε)St

i /(γci). For the sake of convenience, we letS0
i = 0 andφ0

i = 1 for all i. The
algorithm is as follows.

ALG Min-max In stept+ 1, on receiving requestj, use optionarg mink

{∑
i

a(i,j,k)φt
i

ci

}
.

Lemma 7 For anyε ∈ (0, 1], The algorithmALG Min-max described above approximatesλ∗ within a factor of(1+ε),
with a probability at least1− δ, whereδ = n exp

(
−ε2λ∗

4γ

)
We will prove Lemma 7 through a series of lemmas, namely Lemmas 8, 9 and 10. Before we begin the proof, we
give some intuition. Consider a hypothetical algorithm, call itPure-random, that knows the distribution. Letx∗j denote
the optimal fractional solution to the distribution instance. Pure-random is a non-adaptive algorithm which usesx∗j to
satisfy requestj, i.e., it serves requestj using optionk with probabilityxjk. Suppose we wanted to prove a bound
on the performance of Pure-random, that is show that with high probability, Pure-random is within1 + O(ε) of the
optimum, sayλ∗. This can be done using Chernoff bounds: for each resource separately bound the probability that the
total consumption is more thanλ∗ci(1 + O(ε)) using Chernoff bounds and take a union bound. Note that the Chernoff
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bounds are shown by proving an upper bound on the expectation of the moment generating function of the random
variables. If we could show the same bound for our algorithm, then we would be done. Letφt =

∑
i φ

t
i. We wish to

upper bound the expectation ofφm.
Consider the state of the algorithm after the firstt steps. LetX̃t+1

i denote the amount of resourcei consumed in step
t+ 1 had we served the request at stept+ 1 using the Pure-random algorithm instead of our algorithm. Then we show

that the expectation ofφt+1 is upper bounded by
∑

i φ
t
i

(
1 + ε

X̃t+1
i

γci

)
, and the rest of the proof is along the lines of the

Chernoff bound proof.

Lemma 8 For all t,

φt+1 ≤
∑

i

φt
i

(
1 + ε

X̃t+1
i

γci

)
.

Proof:

φt+1 =
∑

i

φt+1
i =

∑
i

φt
i(1 + ε)

X
t+1
i

γci

≤
∑

i

φt
i

(
1 + ε

Xt+1
i

γci

)
≤
∑

i

φt
i

(
1 + ε

X̃t+1
i

γci

)
The first inequality is because the convexity of the function(1 + ε)x can be used to upper bound it by1 + εx for all
x ∈ [0, 1], andXt

i ≤ maxj,k a(i, j, k) ≤ γci. The second inequality follows from the definition of our algorithm as it

chooses the option that minimizes
{∑

i
a(i,j,k)φt

i

ci

}
2

Lemma 9 For all T , E[φT ] ≤ n exp
(

ελ∗T
γm

)
, whereλ∗ is the optimal solution to the LP.

Proof: From Lemma 8, it follows that

E
[
φt+1 | φt

i for all i
]
≤ E

[∑
i

φt
i

(
1 + ε

X̃t+1
i

γci

)]

≤
∑

i

φt
i

(
1 + ε

λ∗

γm

)
= φt

(
1 + ε

λ∗

γm

)
≤ φt exp

(
ελ∗

γm

)
and hence the lemma follows sinceφ0 = n. The second inequality follows from the fact thatE[X̃t+1

i ] ≤ λ∗ci

m for all i.
This is because requests are drawn i.i.d, and hence the optimal value of the distribution instance is the same for all time
steps and is equal toλ∗. 2

Lemma 10

Pr
[
max

i

{
ST

i

ci

}
>
T

m
λ∗(1 + ε)

]
≤ n exp

(
−ε2Tλ∗

4γm

)
.

Proof:

Pr
[
max

i

{
ST

i

ci

}
>
T

m
λ∗(1 + ε)

]
≤ Pr

[
φT > (1 + ε)

T λ∗(1+ε)
γm

]
≤ E[φT ]/(1 + ε)

T λ∗(1+ε)
γm

≤ n exp
(
ελ∗T

γm

)
/(1 + ε)

T λ∗(1+ε)
γm

≤ n exp
(
−ε2Tλ∗

4γm

)
.
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The inequality in the first line is becausemaxi φ
T
i ≤ φT . The rest is similar to proofs of Chernoff bounds. The

second line follows from Markov’s inequality, the third line from Lemma 9 and the fourth line is a well known algebraic
inequality wheneverε ∈ (0, 2e− 1], and in particular whenε ∈ (0, 1]. 2

SubstitutingT = m in Lemma 10, we get Lemma 7.

Adversarial stochastic input model In the above lemmas, we assumed that the requests are drawn i.i.d, i.e., we used
the fact thatE[X̃t

i ] ≤ λ∗ci/m for all t. But in an adversarial stochastic model, since the distribution from which a
request is drawn changes each step, the optimal objective of the distribution instance also changes every step, i.e., it
could beλ∗t at stept. So, in the proof Lemma 9, where we proved that

E
[
φt+1 | φt

i for all i
]
≤ φt exp

(
ελ∗

γm

)
,

we would instead haveE
[
φt+1 | φt

i for all i
]
≤ φt exp

(
ελ∗t
γm

)
. But given a targetλ∗, we know the adversary is con-

strained to pick distributions whose distribution instance has an optimum objectiveat mostλ∗ (recall that this is a

minimization problem). Therefore, we can upper boundφt exp
(

ελ∗t
γm

)
by φt exp

(
ελ∗

γm

)
. The rest of the steps in the

proof remain the same. Thus, the adversary is not constrained to pick requests from the same distribution at every time
step. All we require is that, whatever distribution it uses for drawing its request, the corresponding distribution instance
has an optimum objective value at mostλ∗, which is the target value we aim for.

In the following sections, we illustrate all our proofs in the i.i.d model with unknown distribution and it is easy to
convert them to proofs for the adversarial stochastic input model.

4 Mixed Covering-Packing and Online Resource Allocation

4.1 Mixed Covering-Packing

In this section, we consider the mixed packing-covering problem stated in Section 2.3. and prove Theorem 6. We restate
the LP for the mixed covering-packing problem here.

∀ i,
∑
j,k

a(i, j, k)xj,k ≤ ci

∀ i,
∑
j,k

b(i, j, k)xj,k ≥ di

∀ j,
∑

k

xj,k ≤ 1,

∀ j, k, xj,k ≥ 0.

The goal is to check if there is a feasible solution to this LP. We solve a gap version of this problem. Distinguish between
the two cases with a high probability, say1− δ:

YES: There is a feasible solution.

NO: There is no feasible solution even if all of theci’s are multiplied by1+ ε and all of thedi’s are multiplied by1− ε.

For convenience of description, we refer to the quantities indexed byj as requests, those indexed byi as resources

and those indexed byk as options. The parameterγ for this problem is defined byγ = max
({

ai,j .xj

ci

}
i,j
∪
{

bij .xj

di

}
i,j

)
As before, the algorithm proceeds in steps. In each step, the algorithm samples a request uniformly at random from

the total ofm possible requests. We will prove that if the number of samplesT ≥ Θ(γm ln(n/δ))
ε2 ), then the algorithm

solves the gap version with probability at least(1 − δ). Since the time taken for serving any given request is one (by
taking the time consumed by a single oracle call to be one), this proves that the total run-time isO(γm ln(n/δ))

ε2 ). This
proves Theorem 6.
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Let Xt
i , X̃t

i , St
i be as defined in Section 3. LetY t

i be the random variable indicating the amount of demandi
satisfied during stept, that is,Y t

i = b(i, j, k) if in step t, requestj was chosen and was served using optionk. Let

Ỹi
t

denote the amount of demandi satisfied during stept by the optimal algorithm for the distribution instance of

this problem. LetV T
i =

∑T
t=1 Y

t
i . Let φt

i = ηc(1 + ε
2 )

St
i

γci (1 + ε
2γm )T−t, whereηc = (1 + ε

2 )−(1+ ε
2 ) T

γm . Let

ψt
i = ηd(1− ε

2 )
V t

i
γdi (1− ε

2γm )T−t, whereηd = (1− ε
2 )−(1− ε

2 ) T
γm . Letφt =

∑
i φ

t
i, letψt =

∑
i ψ

t
i andΦt = φt +ψt.

As before, we letS0
i = 0 andV 0

i = 0. The algorithm is as follows.

ALG Packing-Covering Given requestj in stept+ 1, use the option

arg min
k

 1(
1 + ε

2γm

)∑
i

φt
i

a(i, j, k)
ci

− 1(
1− ε

2γm

)∑
i

ψt
i

b(i, j, k)
di


At the end ofT steps, the algorithm checks ifmaxi

ST
i

ci
< T

m (1 + ε
2 ) and if mini

V T
i

di
> T

m (1 − ε
2 ). If true, the

algorithm answersYES. Else it saysNO. We now proceed to prove that, whenever the real answer isYES, the algorithm
saysYES with a high probability. Lemmas 11 and 12 prove this case.

Lemma 11 For a YES instanceE
[
ΦT
]
≤ Φ0.

Proof: Similar to the proof of Lemma 8, we have

Φt+1 ≤
∑

i

φt
i

(
1 + εX̃t+1

i

2γci

)
(
1 + ε

2γm

) +
∑

i

ψt
i

(
1− εỸi

t+1

2γdi

)
(
1− ε

2γm

) .

E
[
Φt+1|φt

i, ψ
t
i for all i

]
≤

∑
i

φt
i

(
1 + ε

2γm

)
(
1 + ε

2γm

) +
∑

i

ψt
i

(
1− ε

2γm

)
(
1− ε

2γm

) = Φt

where the inequality follows from the fact that, when the real answer is YES,E[X̃t
i ] ≤ ci

m andE[Ỹi
t
] ≥ di

m for all i.
Since the above sequence of inequalities holds for everyt, the lemma follows.2

Lemma 12 For a YES instance

Pr
[
max

i

ST
i

ci
≥ T

m
(1 +

ε

2
)
]

+ Pr
[
min

i

V T
i

di
≤ T

m
(1− ε

2
)
]
≤ Φ0

Proof: As in proof of Lemma 10

Pr
[
max

i

ST
i

ci
≥ T

m
(1 +

ε

2
)
]
≤ Pr

[
φT

ηc
≥ 1
ηc

]
≤ E[φT ]

where the inequality in the first line follows fromφT
i ≤ φT for all i, and the next line follows from Markov’s inequality.

Similarly, we have

Pr
[
min

i

V T
i

di
≤ T

m
(1− ε

2
)
]
≤ Pr

[
ψT

ηd
≥ 1
ηd

]
≤ E[ψT ]

Thus the sum of these probabilities is at mostE[φT ] + E[ψT ] = E[ΦT ], which is at mostΦ0 from Lemma 11.2

Observe thatΦ0, the failure probability equalsn
(
ηc(1 + ε

2γm )T + ηd(1− ε
2γm )T

)
, which is upper bounded by

n
(
exp

(
−ε2T
16γm

)
+ exp

(
−ε2T
8γm

))
. If T = O(γm log(n/δ)

ε2 ), we have the failure probability to be at mostδ. Thus
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Lemma 12 proves that the algorithmALG Packing-Covering saysYES with a probability at least1 − δ when the
real answer isYES.

We now proceed to prove that when the real answer isNO, our algorithm saysNO with a probability at least1− δ,
i.e.,

Lemma 13 For a NO instance, ifT ≥ Θ(γm log(n/δ)
ε2 ), then

Pr
[
max

i

ST
i

ci
<
T

m
(1 +

ε

2
) & min

i

V T
i

di
>
T

m
(1− ε

2
)
]
< δ.

Proof: Let S denote the set of requests sampled. Consider the following LP.

minimizeλ (1)

∀ i, λ−
∑

j∈S,k

a(i, j, k)xj,k

ci
≥ − T

m

∀ i, λ+
∑

j∈S,k

b(i, j, k)xj,k

di
≥ T

m

∀ j ∈ S,
∑

k

xj,k ≤ 1

∀ j, k, xj,k ≥ 0
λ ≥ 0.

If the above LP has an optimal objective value at leastTε
2m , then our algorithm would have declaredNO. We

now show that by pickingT = Θ(γm ln(n/δ)
ε2 ), the above LP will have its optimal objective value at leastTε

2m , with a
probability at least1− δ. This makes our algorithm answerNO with a probability at least1− δ.

Consider the dual of LP (1):

maximize
∑
j∈S

βj +
T

m

∑
i

(ρi − αi) (2)

∀ j ∈ S, k, βj ≤
∑

i

(
αi
a(i, j, k)

ci
− ρi

b(i, j, k)
di

)
∑

i

(αi + ρi) ≤ 1

∀ i, αi, ρi ≥ 0
. ∀ j ∈ S, βj ≥ 0.

The optimal value of LP (1) is equal to the optimal value to LP (2), which in turn is lower bounded by the value of
LP (2) at any feasible solution. One such feasible solution isα∗, β∗, ρ∗, which is the optimal solution to the full version
of LP (2), namely the one withS = [m], T = m. Thus, the optimal value of LP (1) is lower bounded by value of LP (2)
atα∗, β∗, ρ∗, which is

=
∑
j∈S

β∗j +
T

m
(
∑

i

ρ∗i − α∗i ) (3)

For proceeding further in lower bounding (3), we apply Chernoff bounds to
∑

j∈S β
∗
j . In order to get useful Chernoff

bounds, we first prove thatβ∗j resides in a small interval. Consider the full version of LP (2), i.e.,S = [m] andT = m.
In this version, since according to the second constraint the optimal solution must satisfy

∑
i(α

∗
i + ρ∗i ) ≤ 1, it follows

that0 ≤ β∗j ≤ γ according to the first constraint. Further, letτ∗ denote the optimal value of the full version of LP (2).
Recall that since we are in theNO caseτ∗ ≥ ε. Now, because of the constraint

∑
i(α

∗
i + ρ∗i ) ≤ 1, it follows that

11



∑
i(ρ

∗
i − α∗i ) ≥ −1 and thus it follows that

∑
j β

∗
j ≤ τ∗ + 1 ≤ 2 max(τ∗, 1). We are now ready to lower bound the

quantity in (3). We have the optimal solution to LP (2)

≥
∑
j∈S

β∗j +
T

m
(
∑

i

ρ∗i − α∗i )

≥
T
∑

j β
∗
j

m
−

√
2T (

∑
j β

∗
j )γ ln(1/δ)
m

+
T

m

∑
i

(ρ∗i − α∗i )
(

Sinceβ∗j ∈ [0, γ]
)

≥ Tτ∗

m
−
√

4T max(τ∗, 1)γ ln(1/δ)
m

(4)

where the second inequality is a “with probability at least1−δ” inequality, i.e., we apply Chernoff bounds for
∑

j∈S β
∗
j ,

along with the observation that eachβ∗j ∈ [0, γ]
We now setT so that the quantity in (4) is at leastTε

2m . Noting thatτ∗ ≥ ε, settingT = Θ(γm ln(n/δ)
ε2 ) will ensure

this inequality and hence proves the lemma.2

Lemmas 11, 12 and 13 prove that the gap-version of the mixed covering-packing problem can be solved in time
O(γm log(n/δ)

ε2 ), thus proving Theorem 6.

5 Online Algorithms with Stochastic Input

In this section, we use the potential function based algorithm to solve the online version of the resource allocation
problem introduced in Section 2.2. The following LP describes the resource allocation problem.

maximize
∑
j,k

wj,kxj,k s.t. (5)

∀ i,
∑
j,k

a(i, j, k)xj,k ≤ ci

∀ j,
∑

k

xj,k ≤ 1,

∀ j, k, xj,k ≥ 0.

Our algorithm computes increasingly better estimates of the objective value by computing the optimal solution for the
observed requests, and uses it to guide future allocations. This is similar to the algorithm in [AWY09], except that we
only need to estimate the value of the optimal solution as against the entire solution itself. Through Lemmas 14 and 15,
we show that our algorithm achieves a competitive ratio of1 − O(ε) thus proving Theorem 2. We assume that the
number of requestsm is known in advance. Algorithm 1 describes our algorithm.

The firstεm requests are not served but used just for computational purposes. After these firstεm requests, the
algorithm proceeds inl stages, namely0, 1, . . . , l− 1, wherel is such thatε2l = 1 andε is a positive number between
0 and 1 that the algorithm designer gets to choose. In stager the algorithm servestr = εm2r requests. Note that the
stager consists of all stepst ∈ (tr, tr+1].

LetW ∗ denote the optimal solution to the distribution instance of the problem. LetXt
i be as defined in Section 3.

Let Y t be the amount of profit earned during stept, i.e.,Y t = wj,k, if in stept, requestj was served using optionk.
Instead of the usualSt

i , we now defineSt
i (r) =

∑t
u=tr+1X

u
i , which is the sum ofXu

i ’s till t for u’s belonging to stage

r alone, i.e.,u ∈ (tr, tr+1]. Similarly,V t(r) =
∑t

u=tr+1 Y
u. Letwmax = maxj,k wj,k.

The potential function for constrainti in stept whent ∈ (tr + 1, tr+1] is defined by

φt
i = ηc(r)(1 + εc(r))

St
i (r)
γci

(
1 +

εc(r)
γm

)tr−t

,

ηc(r) = (1 + εc(r))−(1+εc(r))
tr

γm ,
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Algorithm 1 : Algorithm for stochastic online resource allocation

1: Initialize t0 : t0 ← dεme,
2: for r = 0 to l − 1 do
3: for t = tr + 1 to tr+1 do
4: if t = tr + 1 then
5: If the incoming request isj, use the following optionk:

arg min
k

 εc(r)/γ(
1 + εc(r)

γm

)∑
i

φinit
i (r)

a(i, j, k)
ci

− εo(r)/wmax(
1− εo(r)Z(r)

wmaxm

)φinit
obj (r)wj,k

 .

6: For all i, St
i (r) = Xt

i , andV t(r) = Y t.
7: else
8: If the incoming request isj, use the following optionk:

arg min
k

 εc(r)/γ(
1 + εc(r)

γm

)∑
i

φt−1
i

a(i, j, k)
ci

− εo(r)/wmax(
1− εo(r)Z(r)

wmaxm

)φt−1
obj wj,k

 .

9: For all i, St
i (r) = St−1

i (r) +Xt
i , and,V t(r) = V t−1(r) + Y t.

10: end if
11: end for
12: end for

εc(r) =

√
4γm ln((n+ 1)/δ)

tr
.

Similarly, the potential function for objective at stept is,

φt
obj = ηobj(r)(1− εo(r))

V t(r)
wmax

(
1− εo(r)Z(r)

wmaxm

)tr−t

,

ηobj(r) = (1− εo(r))−(1−εo(r))
trZ(r)
mwmax .

εo(r) =

√
2wmaxm ln((n+ 1)/δ)

trZ(r)
.

Whent = tr + 1, which is a special case marking the beginning of a new stage, the potential function for constrainti is
defined by

φinit
i (r) = ηc(r)

(
1 +

εc(r)
γm

)tr

and the potential function for the objective function is given by

φinit
obj (r) = ηobj(r)

(
1− εo(r)Z(r)

wmaxm

)tr

.

Note that apart from constants, the only difference betweenεo(r) andεc(r) is that instead ofγ, εo(r) haswmax/Z(r).
The valueZ(r), as we define below, gets progressively updated, but within a single stager remains the same. After stage
r, the algorithm computes the optimal objective valueer to the following instanceIr: the instanceIr has thetr requests
of stage-r, and the capacity of resourcei is trci(1+εc(r))

m , i.e., the capacity of resources are scaled down according to the
number of requests by a factor oftr

m , along with a slight extra allowance by a factor of(1+ εc(r)). It useser to compute
the valueZ(r + 1) to be used in the potential function for objective in stager + 1.
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Lemma 14 With probability at least1− 2δ,

trW
∗(1− εc(r))
m

≤ er ≤
trW

∗(1 + 2εc(r))
m

.

Proof: Our goal is to establish bounds oner, which is the optimal solution to the instanceIr. For this we consider
the distribution instance of the following instancêIr: this instance is the same asIr, except that each resourcei has
a capacity oftrci/m instead oftrci(1 + εc(r))/m. We denote this distribution instance ofÎr by D(Îr). Let pr be
the objective value obtained by the algorithm Pure-random on the instanceIr, i.e., the objective value obtained by
following the allocation used by the optimal solution toD(Îr). Since the resource usage and objective value obtained
by the algorithm Pure-random can be seen as the sum of i.i.d random variables, we can apply Chernoff bounds on them.
With a probability at least1 − δ, Pure-random’s usage of resourcei will be within a factor of(1 + εc(r)) of trci

m and
Pure-random’s objective value will fall short oftrW ∗/m (which is the optimal objective value forD(Îr)) by a factor of

at most

(
1−

√
2wmaxm ln((n+1)/δ)

trW∗

)
. Since the instanceIr allows for this extra resource usage by having an additional

capacity by a factor of(1 + εc(r)) as compared tôIr, the real excess resource usage occurs only with probabilityδ.
Thus, with probability1− δ, resources are consumed within capacity and the objective valuepr is at least

pr ≥ trW
∗

m

1−

√
2wmaxm ln((n+ 1)/δ)

trW ∗


≥ trW

∗(1− εc(r))
m

.

The solution obtained by Pure-random is just a feasible solution forIr, and thuspr is smaller than the optimal
objective value forIr, which iser. Thus, with probability more than1− δ, we have,

er ≥
trW

∗(1− εc(r))
m

. (6)

We now get an upper-bound oner. To do this, we consider the LP which defineser, along with its dual. The LP which
defineser is given by:

maximize
∑
j∈Ir

wj,kxj,k (7)

∀ i,
∑

j∈Ir,k

a(i, j, k)xj,k ≤
trci(1 + εc(r))

m

∀ j ∈ Ir,
∑

k

xj,k ≤ 1

∀ j ∈ Ir, k, xj,k ≥ 0.

Consider the dual of LP (7)

minimize
∑
j∈Ir

βj +
tr(1 + εc(r))

m
(
∑

i

αici) (8)

∀ j ∈ Ir, k, βj +
∑

i

a(i, j, k)αi ≥ wj,k

∀ i, αi ≥ 0
. ∀ j ∈ Ir, βj ≥ 0.

The optimal value of LPs (7) and (8) are the same and equal toer. To upper bounder, we now write down the LP
for the distribution instance and its dual. The LP for distribution instance is given by
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maximize
∑
j,k

mpjwj,kxj,k (9)

∀ i,
∑
j,k

mpja(i, j, k)xj,k ≤ ci

∀ j,
∑

k

xj,k ≤ 1

∀ j, k, xj,k ≥ 0.

and its dual (written using a dual multiplier ofmpjβj instead of justβj) is given by

minimize
∑

j

mpjβj +
∑

i

αici (10)

∀ j, k, mpjβj +mpj

(∑
i

a(i, j, k)αi

)
≥ mpjwj,k

∀ i, αi ≥ 0
. ∀ j, βj ≥ 0.

Note that the set of constraints in LP (10) is a superset of the set of constraints in LP (8). Thus any feasible solution
to LP (10) is also feasbile to LP (8), and in particular, the optimal solution to LP (10) given byβ∗j ’s andα∗i ’s is feasible
for LP (8). So the optimal valueer of LP (8) is upper-bounded by its value at the solution constituted by theβ∗j ’s and
α∗i ’s.

The value of LP (8) atα∗, β∗ is equal to∑
j∈Ir

β∗j +
tr(1 + εc(r))

m
(
∑

i

α∗i ci) (11)

To upper bound the expression in (11), we apply Chernoff bounds to
∑

j∈Ir
β∗j . Notice that by the constraints of

LP (10), and by the fact that it is a minimization LP, we getβ∗j ≤ wmax. Using this, we upper bound the expression
in (11) (and henceer) as

=
∑
j∈Ir

β∗j +
tr(1 + εc(r))

m
(
∑

i

α∗i ci)

≤ tr
∑

j

pjβ
∗
j +

√
4tr(

∑
j

pjβ∗j )wmax ln(1/δ) +
tr(1 + εc(r))

m
(
∑

i

α∗i ci)

≤ trW
∗

m
+

2trW ∗εc(r)
m

.

where the first inequality is a “with probability at least1− δ” inequality, i.e., we apply Chernoff bounds for
∑

j∈Ir
β∗j

along with the observation thatβ∗j ≤ wmax. The second inequality follows from noting that
∑

j mpjβ
∗
j +

∑
i α

∗
i ci =

W ∗. This is becauseW ∗ is the optimal value of the distribution instance and hence its dual too.
Thuser ≤ trW∗(1+2εc(r))

m with probability at least1− δ.
Thus we have proved that the upper bound and the lower bound oner hold with probability1 − δ each and hence

together with a probability at least1− 2δ. This proves the lemma.2

Using theseer ’s, we define ourZ(r + 1) as follows:

Z(r + 1) =
mer

tr(1 + 2εc(r))
.

15



Using the bounds oner in Lemma 14, we note thatZ(r+1) ≤W ∗ and thatZ(r+1) ≥ W∗(1−εc(r))
1+2εc(r)

≥W ∗(1−3εc(r)).
Thus with probability at least1− 2 log(1/ε)δ, Z(r) satisfies these bounds for allr. Given the bounds onZ(r), we use
Lemma 12 to see that with a probability at least1−δ, the objective value achieved in stager is at leasttrZ(r)

m (1−εo(r)),
and the amount of resourcei consumed in stager is at mosttrci

m (1 + εc(r)). Hence, these bounds are true for allr with
probability at least1− log(1/ε)δ, since the total number of stagesl = log(1/ε).

The total failure probability is upper bounded by the sum of the failure probability during estimation ofZ(r) through
er, given by2 log(1/ε)δ and the failure probability of our algorithm in all stages together given bylog(1/ε)δ. Thus, the
total failure probability is at most3 log(1/ε)δ.

With a probability of1− 3 log(1/ε)δ, the algorithm obtains an objective value of at least

l−1∑
r=0

trZ(r)(1− εo(r))
m

,

and for eachi, the amount of resourcei consumed is at most

l−1∑
r=0

trci(1 + εc(r))
m

.

On settingγ = O( ε2

log(n/ε) ), andδ = ε
log(1/ε) , the above equations can be simplified to the following lemma.

Lemma 15 With probability higher than1−O(ε), the objective value achieved at the completion of the algorithm is at
leastW ∗(1−O(ε)) and no resource is consumed more than its capacity.

Thus Lemma 15 proves that, our algorithm achieves a competitive ratio of(1 − O(ε)) for γ = O( ε2

log(n/ε) ) and hence
proves Theorem 2.

6 Adwords in i.i.d setting

In this section, we give a simple proof of Theorem 5: greedy algorithm achieves a competitive ratio of(1− 1/e) in the
adwords problem, where the impressions come from an adversarial stochastic input model. As before, we illustrate our
proofs for the i.i.d model with unknown distribution below. We now briefly describe the adwords setting.

Setting. There are a total ofn advertisers, and queries arrive online, from some pool of queries. Let the (unknown)
number of queries that arrive bem. The queries that appear each day are drawn i.i.d from some unknown distribution.
Advertiseri bids an amountbij on queryj. Advertiseri has a budgetBi denoting the maximum amount of money that
can be spent on a given day. The bid amountsbij are revealed online as the queries arrive. The objective is to maximize
the sum of the bid amounts successfully allocated, subject to budget constraints. Whenever a queryj arrives, with a bid
amountbij > remaining budget ofi, we are still allowed to allot that query to advertiseri, but we only earn a revenue
of the remaining budget ofi, and not the total valuebij .

Goel and Mehta [GM08] prove that the greedy algorithm gives a(1 − 1/e) approximation to the adwords problem
when the queries arrive in a random permutation or in i.i.d, but under an assumption which almost gets down to bids
being much smaller than budgets. We give a much simpler proof for a(1− 1/e) approximation by greedy algorithm for
the i.i.d unknown distributions case, and our proof works irrespective of the the relation between the size of the bids and
the budgets involved.

Let pj be the probability of queryj appearing in any given impression. Letyj = mpj . Let xij denote the offline
fractional optimal solution for the distribution instance. Letwi(t) denote the amount of money spent by advertiseri
at time stept, i.e., for thet-th query in the greedy algorithm (to be described below). Letfi(0) =

∑
j bijxijyj . Let

fi(t) = fi(0) −
∑t

r=1 wi(r). Let f(t) =
∑n

i=1 fi(t). Note thatfi(0) is the amount spent byi in the offline fractional
optimal solution to the distribution instance.

Consider the greedy algorithm which allocates the queryj arriving at timet to the advertiser who has the maximum
effective bid for that query, i.e.,argmax

i
min{bij , Bi −

∑t−1
r=1 wi(r)}. We prove that this algorithm obtains a revenue
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of (1 − 1/e)
∑

i,j bijxijyj and thus gives the desired1 − 1/e competitive ratio against the fractional optimal solution
to the distribution instance. The proof is similar to the proof we presented in Lemma 8 for the resource allocation
problem. Consider a hypothetical algorithm that allocates queries to advertisers according to thexij ’s. We prove that this
hypothetical algorithm obtains an expected revenue of(1−1/e)

∑
i,j bijxijyj , and argue that the greedy algorithm only

performs better. Letwh
i (t) andfh

i (t) denote the quantities analogous towi(t) andfi(t) for the hypothetical algorithm,
with the initial valuefh

i (0) = fi(0) =
∑

j bijxijyj . Let fh(t) =
∑n

i=1 f
h
i (t). Let EXCEEDi(t) denote the set of allj

such thatbij is strictly greater than the remaining budget at the beginning of time stept, namelybij > Bi−
∑t−1

r=1 w
h
i (r).

Lemma 16 E[wh
i (t)|fh

i (t− 1)] ≥ fh
i (t−1)

m

Proof: The expected amount amount of money spent at time stept, is given by

E[wh
i (t)|fh

i (t− 1)] =
∑

j∈EXCEEDi(t)

(
Bi −

t−1∑
r=1

wh
i (r)

)
xijyj

m
+

∑
j /∈EXCEEDi(t)

bij
xijyj

m
. (12)

If
∑

j∈EXCEEDi(t)

xijyj ≥ 1, then by (12),

E[wh
i (t)|fh

i (t− 1)] ≥
Bi −

∑t−1
r=1 w

h
i (r)

m
≥
fh

i (0)−
∑t−1

r=1 w
h
i (r)

m
=
fh

i (t− 1)
m

.

Suppose on the other hand
∑

j∈EXCEEDi(t)

xijyj < 1. We can writeE[wh
i (t)|fh

i (t− 1)] as

E[wh
i (t)|fh

i (t− 1)] =
fh

i (0)
m
−

∑
j∈EXCEEDi(t)

(
bij − (Bi −

t−1∑
r=1

wh
i (r))

)
xijyj

m
. (13)

Sincebij ≤ Bi, and
∑

j∈EXCEEDi(t)

xijyj < 1, (13) can be simplified to

E[wh
i (t)|fh

i (t− 1)] >
fh

i (0)
m
−
∑t−1

r=1 w
h
i (r)

m

=
fh

i (t− 1)
m

.

2

Lemma 17 The hypothetical algorithm satisfies the following:E[fh(t)|fh(t− 1)] ≤ fh(t− 1)(1− 1/m)

Proof: From the definition offh
i (t), we have

fh
i (t) = fh

i (t− 1)− wh
i (t)

E[fh
i (t)|fh

i (t− 1)] = fh
i (t− 1)−E[wh

i (t)|fh
i (t− 1)] ≤ fh

i (t− 1)(1− 1
m

),

where the inequality is due to Lemma 16. Summing over alli gives the Lemma.2

Lemma 18 E[GREEDY] ≥ (1− 1/e)
∑

i,j bijxijyj

Proof: Lemma 17 proves that for the hypothetical algorithm, the value of the differencefh(t−1)−E[fh(t)|fh(t−1)],
which is the expected amount spent at timet by all the advertisers together, conditioned onfh(t − 1), is at least
fh(t−1)

m . But by definition, conditioned on the amount of money spent in firstt− 1 steps, the greedy algorithm earns the
maximum revenue at time stept . Thus, for the greedy algorithm too, the statement of the lemma 17 must hold, namely,
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E[f(t)|f(t− 1)] ≤ f(t− 1)(1− 1/m). This means thatE[f(m)] ≤ f(0)(1− 1/m)m ≤ f(0)(1/e). Thus the expected
revenue earned is

E[
m∑

r=1

w(r)] = f(0)−E[f(m)]

≥ f(0) (1− 1/e)

= (1− 1/e)
∑
i,j

bijxijyj

and this proves the lemma.2

Lemma 18 proves Theorem 5.

7 Applications

We now list the problems that are special cases of the resource allocation framework and have been previously consid-
ered.

7.1 Adwords Problem

While in Section 2.2.1 we noted that we could get a1− 1/e approximation to the adwords problem with unboundedγ,

we note here that whenγ is small, i.e.maxi,j
bij

Bi
≤ O

(
ε2

log(n/ε)

)
, we get a1 − O(ε) approximation to the maximum

profit through the resource allocation framework.

7.2 Display Ad Allocation

The following problem occurs in the allocation ofdisplay ads6 and is rather similar to the Adwords problem. Here,
there areimpressionsthat arrive online and have to be allocated to advertisers. Each advertiseri has a valuevij for each
impressionj. The difference is that in this case, the advertisers have a bound on the totalnumberof impressions that
they can be allocated to. The objective is to maximize the total value of the allocation. The LP formulation for this
problem fits directly in our resource allocation framework.

7.3 Network Routing and Load Balancing

Consider a graph (either undirected or directed) with edge capacities. Requests arrive online; a requestj consists of a
source-sink pair,(sj , tj) and a bandwidthρj . In order to satisfy a request, a capacity ofρj must be allocated to it on every
edge along some path fromsj to tj in the graph. In thecongestion minimizationversion, all requests must be satisfied,
and the objective is to minimize the maximum (over all edges) congestion, which is the ratio of the allocated bandwidth
to the capacity of the edge. In thethroughput maximizationversion, the objective is to maximize the number of satisfied
requests while not allocating more bandwidth than the available capacity for each edge. (Different requests could have
different values on them, and one could also consider maximizing the total value of the satisfied requests.) Both the
congestion minimization version and the throughput maximization version can be solved through our algorithm 1 for
resource allocation framework. Kamath, Palmon and Plotkin [KPP96] considered a variant of this problem with the
requests arriving according to a stationary Poisson process, and show a competitive ratio that is very similar to ours.

7.4 Combinatorial Auctions

Suppose we haven items for sale, withci copies of itemi. Bidders arrive online, and bidderj has a utility function
Uj : 2[n] → R. If we posted pricespi for each itemi, then bidderj buys a bundleS that maximizesUj(S)−

∑
i∈S pi.

We assume that bidders can compute such a bundle. The goal is to maximize social welfare, the total utility of all the
bidders, subject to the supply constraint that there are onlyci copies of itemi. Firstly, incentive constraints aside, this

6These are shown on web sites, as opposed to search ads that are shown on search engines and were the motivation for the Adwords problem.
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problem can be written as an LP in the resource allocation framework. The items are the resources and agents arriving
online are the requests. All the different subsets of items form the set of options. The utilityUj(S) represents the profit
wj,S of serving agentj through optionS, i.e. subsetS. If an itemi ∈ S, thenai,j,S = 1 for all j and zero otherwise.
Incentive constraints aside, our algorithm for resource allocation at stept, will choose the optionk (or equivalently the
bundleS) as specified in point 4 of algorithm 1, i.e., minimize the potential function. That can be equivalently written
as,

arg max
k

 εo(r)/wmax(
1− εo(r)Z(r)

wmaxm

)φt−1
obj wj,k −

εc(r)/γ(
1 + εc(r)

γm

)∑
i

φt−1
i

a(i, j, k)
ci


Now, maximizing the above expression is the same as picking thek to maximizewj,k −

∑
i pia(i, j, k), where

pi =

εc(r)/γ

(1+ εc(r)
γm )

εo(r)/wmax

(1− εo(r)Z(r)
wmaxm )

φt−1
obj

· φ
t−1
i

ci
.

Thus, if we post these pricespi on items, agents will do exactly what the algorithm would have done otherwise. Suppose
that the bidders are i.i.d samples from some distribution (or they arrive as in the adversarial stochastic input model). Here
γ = 1/mini{ci} and we can use Theorem 2 to get an incentive compatible posted price auction7 with a competitive

ratio of 1 − O(ε) whenevermini{ci} ≥ O
(

log(n/ε)
ε2

)
. Further if an analog of Theorem 2 also holds in the random

permutation model then we get a similar result for combinatorial auctions in the offline case: we simply consider the
bidders one by one in a random order.

7.5 Selective Call-out

Chakraborty et. al. [CEDG+10] formulated the following problem that arises in the design of an ad-exchange. An
exchange getsad-requestsonline; each ad-request may have multiple slots with differentqualities. Whenever the
exchange gets an ad-request, it calls out to a subset of ad-networks for a bid. Given the bids it then allocates the slots
to the highest bidders. The ad-networks have constraints on how frequently they want to be called out. In addition,
the following assumptions are made: the ad-requests are i.i.d samples from an unknown distribution, and for every ad-
network its values for all ad-requests of a certain type are i.i.d from a distribution that is known to the exchange. They
consider various objective functions, such as social welfare, revenue of a particular auction, GSP with reserve, and so
on. They state their results in the PAC model, where they use an initial sample of impressions to train their algorithm.
They give a bound on the number of samples needed in order to get a1−1/e− ε competitive algorithm. We can use our
algorithms (with an approximate relaxation, Theorem 4) to improve their results in the following two ways. Either we
are given the target objective value, in which case we achieve the same competitive ratio in the online setting without
the need for an initial sample. If we are not given the target objective value then we need an initial sample to estimate
that value. The number of samples we need is less than what is required by [CEDG+10] by a factor ofn. Further, our
algorithm would also work in the adversarial stochastic input model.

8 Conclusion and Future Work

Our work raises the following open questions.

• As mentioned in the introduction, we can show that our algorithm works in the i.i.d model, so the natural question
is if our algorithm works for the random permutation model.

• Currently in our algorithm for the online case, we need to estimate the optimum objective function value periodi-
cally. For this we need to solve (at least approximately) an offline instance of the problem repeatedly. Is there an
algorithm that avoids this?

7Here we assume that each agent reveals his true utility functionafter he makes his purchase. This information is necessary to compute the prices
to be charged for future agents.
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• Perhaps the holy grail for an online algorithm for say, Adwords, is to get a guarantee of the following form: if
the input is i.i.d from some given distribution then get a competitive ratio that is close to 1, while simultaneously
getting a competitive ratio of1 − 1/e if the input is adversarial. Our algorithm for Adwords (or some simple
variant) could actually achieve this. At the very least, can we get such a guarantee for onlineb-matching with
different budgets? Note that when all the budgets are the same then our algorithm for the min-max version is
equivalent to a simple algorithm called BALANCE that achieves this. (This observation follows from the results
in Kalyanasundaram and Pruhs [KP00] and Motwani, Panigrahy and Xu [MP06].)

• A high level goal is to come up with other reasonable definitions that go beyond worst case. The motivation for
this is to bridge the gap between the theory and practice of online algorithms.
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