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Abstract

The convexity assumptions required for the Arrow-Debreu theorem are reasonable and real-
istic for preferences; however, they are highly problematic for production because they rule out
economies of scale. We take a complexity-theoretic look at economies with non-convex produc-
tion. It had been known that in such markets equilibrium prices may not exist; we show that it
is an intractable problem to achieve Pareto efficiency, the fundamental objective achieved equi-
librium prices. The same is true for core efficiency or any one of an array of concepts of stability,
with the degree of intractability ranging from F∆P

2 -completeness to PSPACE-completeness. We
also identify a novel phenomenon that we call complexity equilibrium in which agents quiesce,
not because there is no way for any one of group of them to improve their situation, but be-
cause discovering the changes necessary for (individual or group) improvement is intractable. In
fact, we exhibit a somewhat natural distribution of economies that gives an average-case hard
complexity equilibrium.
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1 Introduction

General Equilibrium Theory studies stable outcomes in markets — outcomes where each agent is
doing as well as he can given the actions of others [17]. In the standard model, a market consists of
consumers with initial endowments (vectors of goods) and preferences (utility functions), and firms
with production sets (specifying what vector(s) of goods can be produced with each combination
of raw materials); consumers own shares in firms.

By far the most studied kind of stable market outcome is the price equilibrium: Each firm
optimizes its profit at market prices, and each consumer optimizes her utility at the same prices,
selling her endowment and purchasing her preferred bundle of goods. Magically, this uncoordinated
activity clears the market: no goods are left unsold, and all demand is satisfied. Most importantly,
the resulting allocation of goods is efficient in the sense of Pareto: there is no allocation that
is better in the sense that it dominates, in terms of utility, the allocation achieved via the price
mechanism (this is known as the First Theorem of Welfare Economics).

Price equilibria had been studied by economists since the mid 19th century, but it was not
until 1954 that Arrow and Debreu [3] made the idea irresistibly powerful and attractive by proving
that (under assumptions) an equilibrium price vector is guaranteed to always exist. This result
promises a kind of Arrow-Debreu paradise, where equilibrium is both beneficient (it achieves Pareto
efficiency) and universally guaranteed1. The theory has spawned an entire area of Economics, and
of course more recently a variety of results in Algorithmic Game Theory, including many algorithms
for special cases (see [18], Chapters 5 and 6 for a survey, as well as [13, 11, 12] for production-specific
algorithms).

There are of course wrinkles in General Equilibrium Theory. The existence proof in [3] is
non-constructive, and this has been shown to imply some form of intractability, weaker than NP-
completeness [19, 7]. The basic theorem holds for a very simplified model; in more realistic models
parameters may be stochastic, time-varying, and generation-specific, among many other compli-
cations, and much work has been done addressing such difficulties. The model also hides tricky
externalities (for example, production, or consumption, by one can harm the environment for all).
Many other objections (e.g., that goods are available at different places and times) can be absorbed
in the model by enlarging it. The focus of this paper is one of the most fundamentally objectionable
assumptions of the theory, namely the convexity assumption for production.2

Convexity in utilities is quite natural: it states that you may draw less pleasure from your
tenth evening dress than you did from your first. In contrast, convexity in production is very
questionable because it rules out economies of scale. In other words, producing the hundredth
airplane cannot, in any way, be easier than producing the first one. In the absence of this utterly
unrealistic assumption — that is to say, in realistic economies — a price equilibrium may not exist,
and thus the First Theorem cannot guarantee Pareto efficiency: Paradise lost.

Market Equilibrium Theory without Convexity of Production. Since price equilibria
may not exist in the absence of convexity in production, economists have studied the set of Pareto
optima (which do generally exist). The first work in this line was by Guesnerie [9], whose stated
goal was “to characterize precisely Pareto-optimal states and to examine the possibility of achieving
them in a decentralized economy” (a task which is, as we point out, unattainable for reasons of

1In an excellent Microeconomics textbook [16] one reads after the statement of the First Theorem: “You should
now be hearing choirs of angels and choruses of trumpets. The invisible hand of the price mechanism produces
equilibria that cannot be improved upon.” The author goes on to expose and discuss the many problems of the
theory.

2Convexity in production refers to convexity of the set of net production vectors. For example, if a firm can
produce according to net production (input/output) vectors y1 and y2, then it can also produce according to any
production vector αy1 + (1− α)y2 for α ∈ [0, 1].
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complexity). Since then, a vast literature has developed; for two excellent surveys, see [6, 1] — the
first one actually contains a discussion of computation.

A standard approach is to assume that firms price goods at marginal cost, in other words,
postulate that prices depend on production decisions; this assumption is quite strong and rather
artificial and unrealistic, but it often yields an allocation that is Pareto efficient — not always, of
course. The state of the art in this direction (e.g. the marginal pricing rule of [5]) still seeks a
decentralized model of agent behavior that is guaranteed to achieve Pareto efficiency. Our results,
outlined next, suggest that there are huge computational impediments in the way of this ambition.

Our Results: Computational Complexity in Markets with Non-Convex Production.
We study markets with non-convex production from the perspective of computational complexity.
To the best of our knowledge, the only other work with a computational flavor is [21], which employs
dimensional communication complexity to differentiate this case from the convex one: it is shown
in [21] that ≈ m ·n reals are needed to achieve Pareto efficiency in this case, where m is the number
of goods and n the number of agents and firms, as opposed to only m in the convex case.

We show that the theory of markets with non-convex productions is plagued with very bleak
negative complexity results, as many natural concepts of rationality are hard for various levels of the
polynomial hierarchy. We start by showing that computing a Pareto efficient outcome in a market
with non-convex production is F∆P

2 -hard. Economists regard Pareto efficiency as a sine qua non
for any concept of stability or rationality in markets. Hence, our negative result for the complexity
of finding Pareto efficient outcomes is a lower-bounds for any “reasonable” equilibrium concept.
Finally, in sections 4 and 5, we give similar results for two concepts of stability more sophisticated
than Pareto efficiency: It is FΣP

2 -hard to tell if an allocation is in the core (no coalition of agents
has an incentive to defect and create its own economy). And for a natural models of sequential
production, we show that computing equilibria is F∆P

3 -hard and PSPACE-hard, respectively.
Perhaps most significantly, we show in the process that such economies can have a novel kind of

“equilibrium,” from which deviation may yield tremendous improvement for any and all agents, but
the agents are stuck at a suboptimal solution of a particular instance of an NP-hard optimization
problem. We call such a situation a complexity equilibrium (Definition 6.2). When agents are at such
an equilibrium, standard complexity-theoretic assumptions imply that no computationally efficient
procedure would generally allow them to improve – indeed, it is even intractable to recognize that
improvement is possible. With the exception of deliberate complexity-theoretic studies in game
theory (e.g. [20]), we are not aware of other natural economic situations in which computational
complexity begets stability. Interestingly, we also present a somewhat natural average-case NP-hard
construction of a complexity equilibrium.

2 Foundations and Models

In this section we introduce the standard economic model and relevant complexity classes.

2.1 The Economic Model

We will employ a slightly simplified version of the standard private ownership economy used in
general equilibrium theory [17]. We define an economy E as follows:

Agents: An economy has n agents.

Goods: An economy has m divisible, tradable goods.

Utilities: Each agent i has a utility function ui : Rm → R mapping bundles of goods to amounts
of utility. An agent’s consumption in an economy is specified by a vector of goods xi ∈ Rm.
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Our reductions use a simple form of utilities known as Leontief utilities, which take the form

u(x) = min
j

xj
αj

,

i.e. goods are demanded in constant proportions specified by the parameters {αj} (possibly
0).

It is reasonable to make the following assumptions about utility functions (see [22] for a dis-
cussion of their absence):

1. Given x, it is possible to obtain ui(x) in polynomial time (e.g. ui(x) is efficiently com-
putable or we are given an oracle for ui(x)).

2. Each function ui(x) satisfies standard convexity assumptions as stated by Arrow and
Debreu [3] (continuity, convexity of the upper level set, and nonsatiation).

Endowments: Each agent i is endowed with a quantity of each good, i.e. a vector ei ∈ Rm.

Production: Each agent in an economy owns3 a set of production units Fi = {fk : Rm → Rm}
where fk maps bundles of input goods to bundles of output goods. The behavior of a production
firm is often specified by a net production vector yk = fk(xk) − xk, where xk is the vector of
goods consumed by firm k (note that this is different from xi, the vector of goods consumed
by agent i).4

Our reductions use one very simple form of non-convex production function, namely Leontief
production functions with fixed costs. Such a function f takes the form

f(x) = z ·max

(
min
j

(
xj − βj
αj

)
, 0

)
where z is a bundle of goods and βj is a fixed cost of each good required to have positive
production. Interestingly, the addition of fixed costs is sufficient to force the agent to solve a
discretized problem. This will be a key technique in our reductions.

We make the following assumptions about production in the economy:

1. A production function f(x) is efficiently computable for all x.

2. The total set of production possibilities is closed and bounded. The total set of production
possibilities contains any net production vector that may achieved by the economy. I.e.
it contains a vector y ≥ 0 if and only if there is a set of vectors {yk ∈ Yk} such that∑

i ei +
∑

k yk = y.

3. There is no x such that f(x)− x ≥ 0 other than x = 0 (no free lunch).

4. For all f(x), a bounded input x implies a bounded output f(x).

With the exception of the computability assumption, these are standard or weakened versions
of standard assumptions in the economic literature. The efficient computability assumption is
nonstandard insofar as the issue has not been considered.

Finally, we recognize that smoothness is a common assumption in economics. While the
functional forms we use for f (and u) are not smooth, they may be made smooth without
affecting the results in this paper.

3In the standard private ownership economy, agents are said to own shares in production firms and receive the
appropriate fraction of the profit. Since we avoid discussion of prices, the total ownership restriction avoids the issue
of cooperative production for which there is already a literature, e.g. [8].

4Standard General Equilibrium Theory specifies a production firm by a set of possible net production vectors Yk
instead of a function fk. While there are scenarios that differentiate the two representations, we will not encounter
them here.
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We also use the following standard economic vocabulary (see [17]):

Definition 2.1 An economic allocation (hereafter an allocation) is an assignment (x, y) such that
xi is the vector of goods consumed by agent i and yk is the vector of net outputs for firm k.

An allocation is feasible if the amount consumed is less than the amount available in the econ-
omy, i.e. ∑

i

xi ≤
∑
i

ei +
∑
k

yk

where yk = fk(xk)− xk for the vector of goods xk used as input to fk.

Definition 2.2 An economic allocation (x1, y1) is said to be strictly Pareto preferred to another
allocation (x2, y2) if some agent receives more utility in allocation 1 than in allocation 2 and no
agent receives less utility.

An allocation (x∗, y∗) is Pareto efficient or Pareto optimal if no feasible allocation is strictly
Pareto preferred to it.

Definition 2.3 The social welfare W of an allocation (x, y) is the sum of the utilities obtained by
consumers in the economy, i.e.

W =
∑
i

ui(xi).

The particular form of Leontief utilities gives the following:

Proposition 2.4 (Free disposal under Leontief Utilities.) When utility functions are Leontief, then
x′ ≥ x implies ui(x

′) ≥ ui(x).

This allows us to make a key assumption: when an agent has a good ŝ and only one possible
use for that good, we may assume that ŝ is applied to that use because no harm can be done.

2.2 The Polynomial Hierarchy

Our computational complexity results will locate variations on the General Equilibrium problem
in different classes of the polynomial hierarchy. The relevant portions of the polynomial hierarchy,
ΣP
k and ∆P

k , are defined recursively as

ΣP
0 = ∆P

0 = P

ΣP
k = NPΣPk−1

∆P
k = PΣPk−1

in other words, ΣP
k is equal to NP with an oracle for ΣP

k−1. A prefixed “F” denotes the corresponding

class of functional problems, e.g. FΣP
k .

Krentel [14] defines the related class OptP as the class of problems that may be expressed as the
maximum (or minimum) value along any branch of a nondeterministic Turing machine. Relevant
to our work, he shows that any OptP-complete problem is complete for the class F∆P

2 and shows
a similar generalization to F∆P

k [15]. For our purposes, we use the fact that any OptP problem is
in F∆P

2 .
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3 Computing Pareto Optima

In Economics, Pareto efficiency (the requirement that there be no allocation preferred to the current
one by all) is essentially a prerequisite for any reasonable solution concept or prediction. By showing
negative complexity results for finding a Pareto efficient allocation, we lower bound the complexity
of any equilibrium concept that achieves Pareto efficiency. Our first result classifies the hardness
of computing a Pareto efficient allocation:

Theorem 3.1 Computing a Pareto efficient allocation in an economy with non-convex production
functions and polynomial-time computable utility functions is F∆P

2 -complete.

We prove this theorem after introducing two gadgets.

3.1 Gadgets

The proofs for Theorems 3.1 and 6.3 will construct economies out of the following gadgets:

The Choice Gadget. The choice gadget Choice(α1 · ĵ1, . . . αc · ĵc) enforces indivisibility: given a
set of production options, agent i must choose exactly one of the possible output goods. Specifically,
when agent i has a choice gadget Choice(· · · ), the economy includes the following:

Goods: ŝ, ĵ1, . . . ĵc.

Production: agent i owns firms with the following production functions:

∀ĵk : xĵk = fjk(xŝ) = αk ·max(xŝ − 1, 0) .

Endowment: ei,ŝ = 2 .

For each good ĵk, agent i has a production function to turn xŝ units of good ŝ into αk · (xŝ − 1)
units of good ĵk. Since agent i has only 2 units of good ŝ, it follows that in any allocation, only
one good ĵk may be produced in positive quantities.

In order to ensure that all of good ŝ is consumed, we stipulate that no agent has any other
use for good ŝ, either as a source of utility in consumption or as an input to production. Thus,
by Proposition 2.4 (free disposal), we may assume that agent i will use all 2 units of good ŝ in
equilibrium and, therefore, produce exactly αk units of the chosen good ĵk.

The Limit Gadget. The limit gadget enables the economy to limit the production of a specific
good ĵ to α units. An instance of Limit(ĵ, α) consists of

Goods: ˆ̃j, r̂, and ĵ.

Production: (owned by agent i):

xĵ = f(xˆ̃j
, xr̂) = min(xˆ̃j

, xr̂) .

Endowment: ei,r̂ = α .

The good r̂ acts as a limiting reagent in the production function f(xˆ̃j
, xr̂) — since the endowment

of r̂ is fixed at α, agent i may produce as much ĵ as desired up to α units.

To enforce this limit, all production functions that produce ĵ are modified to produce ˆ̃j, thereby
forcing all of good ĵ to come from f(xˆ̃j

, xr̂) or an endowment.
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3.2 Proof

First, we must note that Pareto optima always exist in our economies:

Proposition 3.2 Under the assumptions of Section 2.1, a Pareto efficient allocation always exists.

Proof: Observe that if allocation (x′, y′) is strictly Pareto preferred to (x, y), then (x′, y′) must
have a higher social welfare than (x, y). Thus, since the maximum social welfare W ∗ is well defined,
any allocation that achieves W ∗ is an allocation for which no strictly Pareto preferred allocation
exists, i.e. a Pareto optimum.

We now prove Theorem 3.1.
Proof: (Proof of Theorem 3.1.) First, we show that an efficient allocation may be computed in
F∆P

2 .
Consider the following problem: compute a feasible allocation (x, y) with social welfare at least

W . It may be solved in NP by guessing the goods xi consumed by each agent and the goods xk used
as inputs by each firm. (The assumptions of computability imply that we may efficiently compute
(x, y) and W from the xi and xk vectors.) As in Proposition 3.2, an allocation with optimal social
welfare W ∗ must be Pareto efficient. Thus, a Pareto efficient allocation may be expressed as the
optimum of an NP problem, so it is in OptP and therefore F∆P

2 .
To show that computing a Pareto efficient allocation is F∆P

2 -hard, we reduce the F∆P
2 -complete

problem Weighted MAX-SAT [14] to an economy. Let (Φ =
∧
j φj , {αj}) be a Weighted MAX-SAT

instance, i.e. we desire a boolean assignment χ to the CNF formula Φ that maximizes
∑

j αjφj(χ).
Consider the following economy:

Agents: One agent i for each variable χi and one agent j for each clause φj .

Goods: A utility good γ̂.

For each SAT variable χi: two goods χ̂i and ˆ̄χi.

For each clause φj : one good φ̂j .

Utilities: ui(x) = xγ̂ .

Production: Each variable agent i owns:

Choice(χ̂i, ˆ̄χi) ,

and each clause agent j owns:

∀χi ∈ φj : xφ̂j = fφj ,χi(xχ̂i) = xχ̂i

∀χ̄i ∈ φj : xφ̂j = fφj ,χ̄i(x ˆ̄χi
) = x ˆ̄χi

Limit(φ̂j , 1)

xγ̂ = fγ,φj (xφ̂j ) = αj · xφ̂j .

In this economy, a positive quantity of good χ̂i (respectively ˆ̄χi) signifies that χi was set to true
(respectively false). The choice gadget ensures that only one good (χ̂i or ˆ̄χi) may be present in

positive quantities. Similarly, a positive quantity of good φ̂j signifies that clause φj was satisfied,

enforced by the production functions fφj ,χi and fφj ,χ̄i . Finally, the clause agents turn φ̂j into a
utility good γ̂ using fγ,φj . The weighted sum of the satisfied clauses will be the amount of γ̂ in the
economy. The limit gadget ensures that each clause is only “counted” once.
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Since agents only desire γ̂, it follows that any Pareto efficient allocation must create the maxi-
mum amount of γ̂, i.e. solve the weighted MAX-SAT instance. Thus, computing a Pareto efficient
allocation is F∆P

2 -complete.

Of course some non-convex economies may have price equilibria, or equilibria in marginal prices;
is the previous complexity result irrelevant in such favorable special cases? Alas, we show below
that these cases are hard to recognize, and even if we know our economy is such, computing these
prices is intractable:

Theorem 3.3 It is NP-complete to distinguish between economies that have no price equilibria or
equilibria in marginal prices, and those that have both.

A sketch is in the Appendix.

4 Computing Core Allocations

Pareto efficient allocations are stable in a cooperative sense, that is, with respect to a concept of
deviation that requires all agents to cooperate and change their production and consumption. in
this section, we consider allocations that are also stable with respect to certain selfish defections.
A standard concept of rationality in economics is the core. An allocation is said to be in the core if
no coalition would prefer to defect, i.e. no subset of agents can achieve strictly higher utility among
themselves by creating a separate economy in which they are the only agents [17]. Price equilibria
are always in the core; however, since price equilibria do not exist as such, we potentially lose this
property when we lose convexity. A complexity equilibrium therefore is an allocation from which it
is intractable to find another allocation where some agents do strictly better using only their own
endowment and production technologies.

We find that computing core allocations is harder than computing Pareto optima:

Theorem 4.1 Computing an allocation in the core is FΣP
2 -complete (and such an allocation may

not exist).

Additionally, if we relax our rationality requirements to include only single-agent deviations, then
rational allocations are guaranteed to exist and are as easy to find as Pareto optima:

Theorem 4.2 Computing an allocations that is rational with respect to single-agent deviations and
Pareto improvement is F∆P

2 -complete.

The remainder of Section 4 contains proof sketches for Theorems 4.1 and 4.2. Certain full proofs
may be found in Appendix A.

4.1 Proof Sketches

We use new gadgets; however, we only sketch the relevant one here (the complete definitions can
be found in Appendix A).

The Circle-of-Death Gadget. The circle-of-death COD(d̂) constructs a group of three agents
for which it is impossible to achieve a core allocation unless they may consume ≥ 1

2 units of good

d̂. (The construction is given in Appendix A.)
Proof: (Proof sketch for Theorem 4.1.) For FΣP

2 -completeness, the difficult direction is to show
that it is FΣP

2 -hard to find a core allocation (xc, yc). We reduce from the FΣP
2 -complete problem

Σ2SAT [2]: Σ2SAT [2]:
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∃x1∀x2Φ(x1, x2) .

(The full reduction is given in Appendix B.1.) It is easy to construct an economy that attempts
to satisfy Φ. The trick is to engineer the payoffs such that a coalition defects if there is an x2

that falsifies Φ given x1. We encode x1 in the identities of the agents who defect so the defecting
coalition can only produce one value for x1, and we use a circle of death gadget to ensure that no
allocation intentionally falsifying Φ can ever be in the core. As a result, any allocation in the core
must make Φ true for any setting of x2, i.e. x1 is as desired.

Proof: (Proof sketch for Theorem 4.2.) To show F∆P
2 -hardness, first, assume a single agent i to

leaves the economy. The defecting agent will maximize his utility using only his endowment ei and
his own production functions Fi. We will call his resulting utility his batna,5 bi. Note that we can
compute bi in F∆P

2 , and, given the bi’s, optimizing production subject to individual rationality is
also in F∆P

2 .

5 Computing Equilibria in a Sequential Model

Thus far, we have considered the most common models of rationality in markets — individual
defection and core rationality. However, since production often involves intermediate goods, it
seems natural to consider a model that makes this sequential property explicit.

For example, consider a production sequence in which â is transformed into b̂, b̂ is transformed
into ĉ, and ĉ is consumed. Moreover, imagine that the agent who transforms b̂ into ĉ would rather
just keep the b̂ that he gets. It seems natural that this agent should be able to defect after receiving
b̂, therefore disrupting future production. Core rationality ignores this possibility because it requires
that defecting agents be excluded from the economy.

Since we are not aware of a standard, general model of sequential production, we adopt what
we believe is a natural model. Specifically, we augment the production model to specify time:

Definition 5.1 A sequential production plan is a specification ({xi}, {xk,t}) including the vector
of goods xi consumed by agent i and the vector of production inputs xk,t used by firm k at time
t. A feasible production plan is one in which all production inputs required at time t exist in the
economy, i.e. ∑

k

xk,t ≤
t−1∑
τ=0

∑
k

(fk(xk,τ )− xk,t) +
∑
i

ei .

To ensure that all sequential production plans have polynomial size, we require that each func-
tion fk may be used at most once and that some production function fk is used at each timestep.

First, we assume that defectors are isolated for the remainder of the production plan, i.e. an
agent will participate until time td and then choose to deviate, after which he cannot trade and can
only use his own production technologies Fi. In this setting, we classify the complexity and show
that complexity equilibria exist under the natural generalization:

Theorem 5.2 In a model in which defecting individuals will face subsequent isolation, it is F∆P
3 -

complete to find the optimal sequential production plan in which no individual wishes to defect.

5The acronym BATNA, meaning “Best Alternative To a Negotiated Agreement,” is commonly used in negotiation
theory.

8



Second, we observe that isolation is not always a credible threat. We would like a “subgame
perfect” allocation; however, a subgame perfect equilibrium may require an exponentially large
specification. Thus, we ask for a production plan that is consistent with the realization of some
subgame perfect equilibrium. We show that this problem is computationally harder:

Theorem 5.3 In a model in which defectors are not isolated, it is PSPACE-hard to find a sequen-
tial production plan that is consistent with a subgame perfect equilibrium.

The proof for Theorem 5.2 may be found in Appendex B.2. The proof for Theorem 5.3 is
omitted.

6 Complexity Equilibria

Perhaps the most interesting complexity-theoretic phenomenon in non-convex economies is the
existence of allocations that are stable because profitable deviation is computationally intractable.
To formalize complexity equilibria, one must recognize that stable outcomes in Economics are
defined in terms of an appropriate concept of deviation.

Definition 6.1 A deviation scheme is a mapping D assigning each feasible allocation and subset
of agents a set of feasible allocations. Intuitively, if (x, y) is a feasible allocation and S ⊆ [n], then
D((x, y), S) is the set of all allocations to which the agents in S can drive the economy in one step
called a deviation by S. Deviation (x′, y′) ∈ D((x, y), S) is a profitable deviation by S if each i ∈ S
has at least as good utility in (x′, y′) than in (x, y), and at least one agent i ∈ S has strictly better
utility. A D-equilibrium is an allocation (x, y) such that for all S D((x, y), S) contains no profitable
deviations.

Suppose that, for all allocations (x, y) D((x, y), S) is the set of all feasible allocations when-
ever S = [n], and is the empty set otherwise; then D-equilibria are precisely the Pareto optimal
allocations. To define the core, D((x, y), S) contains all feasible allocations that are also feasible
if the endowments, consumption, and production by agents not in S is set to zero. And for the
sequential production model, D((x, y), {i}) contains all allocations that can be achieved by having
agent i unilaterally change her production decisions; all other values of D are empty.

We can now define complexity equilibria:

Definition 6.2 We say that a family of economies E has complexity equilibria with respect to
deviation scheme D if the following propblem is NP-complete: Given an allocation (x+, y+)E in an
economy E ∈ E , find a profitable D-deviation.

Theorem 6.3 Economies with non-convex production possibilities have complexity equilibria with
respect to Pareto improvement, core rationality, and sequential rationality. Moreover, the ineffi-
ciency of the complexity equilibrium is unbounded.

The proof of this theorem follows later in this section. Through standard complexity theory
arguments involving so-called complexity cores, this result implies that, unless P = NP, there are
infinite families of allocations on which any group of polynomial-time agents would be almost always
stuck at a very inefficient allocation. Moreover, we show the existence of families of economies with
complexity equilibria relative to average-case NP-hardness. We refer the reader to Bogdanov and
Trevisan’s survey [4] for background on average-case complexity.

Theorem 6.4 There exists distribution of economies (D, E) with complexity equilibria from which
improvement is average-case NP-hard.
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Significantly, the family of economies exhibiting this behavior is a somewhat natural model —
certainly quite natural compared to many of the other distributional problems for which one can
prove average-case results. We sketch the proof in Appendix C.
Proof: (Of Theorem 6.3.) Technically, this theorem follows from the construction in Theorem
3.1 and the fact that given an assignment satisfying k clauses of a CNF, it is NP-hard to satisfy
k + 1 clauses. However, this argument is quite nonconstructive. To be more explicit, we construct
a simple family of economies E in which agents only receive a significant amount of utility if they
find a solution to a CNF SAT formula Φ.

Let Φ =
∧
φj be a CNF SAT instance with nΦ variables χi and mΦ clauses φj . We construct

the following economy EΦ:

Agents: One agent i for each SAT variable χi.

Goods: For each variable χi: two goods χ̂i and ˆ̄χi.

For each clause φj : one good φ̂j .

Utilities: ui(x) = mΦ ·minj xφ̂j .

Production: Each agent i owns:
Choice(χ̂i, ˆ̄χi)

(this implicitly adds one source good ŝi per variable χi),

∀φj s.t. χi ∈ φj : xφ̂j = fφj ,χi(xχ̂i) = xχ̂i ,

∀φj s.t. χ̄i ∈ φj : xφ̂j = fφj ,χ̄i(x ˆ̄χi
) = x ˆ̄χi

.

Each agent i also owns

∀φj : xφ̂j = fφj , ŝi(xŝi) =
1

(nm)2
xŝi

This economy behaves similarly to the one in Theorem 3.1, except that it is based on a standard
CNF SAT instance instead of a MAX-SAT instance. Again, agents are intended to choose χ̂i or
ˆ̄χi to pick a setting of variable χi. However, since we want all clauses satisfied, we use a Leontief
utility function to give utility if and only if all clause goods are present.

It immediately follows that agents may obtain positive utility from an allocation if and only if
Φ is satisfied. When the agents do satisfy Φ, each variable may occur in at most mΦ clauses and,
therefore, it is always possible to produce at least 1

mΦ
units of each clause good φ̂j and, consequently,

attain a total social welfare W of at least 1.
Thus, the allocation in which the agents use all their ŝi in fφj , ŝi(xŝi) is a complexity equilibrium

— it is certainly not Pareto efficient if Φ has a solution; however, finding an allocation that is Pareto
preferred requires satisfying Φ, which is NP-hard. Moreover, if we eliminate fφj , ŝi(xŝi) altogether,
the relative inefficiency (relative social welfare of the complexity equilibrium compared to a true
Pareto optimum) is unbounded because the social welfare at the complexity equilibrium is 0 and
the social welfare at a Pareto optimum is at least 1.
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7 Discussion and Open Problems

We showed that economies with nonconvexities — in other words, real economies — can be theaters
of extreme complexity phenomena, including a novel kind of equilibrium in which agents quiesce
because of the intractability of the task of finding a better allocation. One remark here is in order:
economists often respond to complexity results such as the PPAD-completeness of Nash equilibria
by questioning the relevance, and plausibility in real life, of the complex games with specialized
structure that arise in those reductions. In the present situation, however, the intractability is,
intuitively, more “generic.” Nonconvex optimization is a hard problem, and in hard optimization
problems “gaps” between optima and defaults are common. As a result, the present complexity
results may be a little more compelling to economists.

One could hope for a proof that, in a well-defined sense to be determined, nonconvex economies
are “often,” or even “almost always,” computationally hard. Our average-case hard construction
takes a step in this direction, and, we believe, gives hope that stronger results are possible.

A Appendix: Gadgets

The SAT Gadget. The SATΦ({χ̂i}, { ˆ̄χi}, Φ̂TRUE , Φ̂FALSE) gadget enables an agent i to evaluate

an arbitrary boolean formula Φ to produce exactly one unit of either Φ̂TRUE or Φ̂FALSE . Let Φ be
expressed as a tree T on which each literal in Φ is a leaf and each internal node represents the AND
or OR of its children. Then the SAT gadget is described by the following subset of an economy:

Goods: For all variables χi in Φ: goods χ̂i and ˆ̄χi.

For each internal node t in tree T : goods t̂ and ˆ̄t.

Let r refer to the root of the tree. Then r̂ and ˆ̄r are synonyms for Φ̂TRUE and Φ̂FALSE .

Production: For all AND nodes t in T with children cj : the functions

xt̂ = ft(x) = min
j
xĉj

∀c̄j : xˆ̄t
= ft̄(x) = xˆ̄cj

and for all OR nodes t with children c1,. . . : two functions

∀cj : xt̂ = ft(x) = xĉj

xˆ̄t
= ft̄(x) = min

j
xˆ̄cj

Finally, we ensure that at most one unit of the true and false good exists:

Limit(Φ̂TRUE , 1)

Limit(Φ̂FALSE , 1)

(When necessary, constant scalars may be added to ensure that at least one unit of Φ̂TRUE or

Φ̂FALSE is created.)

In the manner of previous SAT reductions, this gadget allows direct evaluation of Φ given
sufficient quantities of the goods setting each variable χi. The main differences from our previous
reductions are that this gadget evaluates arbitrary formulas and that it explicitly signals false as
well as true.
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The Circle-of-Death Gadget. The circle-of-death constructs a group of three agents who will
continually defect unless they are given a particular good. The gadget COD(d̂) includes the
following:

Agents: Three agents 1, 2, and 3.

Goods: For each agent i, there is one source good ŝi and one product good p̂i. There is also a
deactivator good d̂.

Endowments: Agent i is endowed with 2 units of ŝi and nothing else.

Utilities: Agent i has utility function ui(x) = xp̂i .

Production: Agent i has a production function for producing the bundle

[xp̂i−1
, xp̂i ] = fi(x) = [2, 1] ·max(min(xŝi−1

− 1, xŝi − 1), 0)

and a deactivated production function

xp̂i = fd̂,i(xŝi , xd̂) = min(xŝi , 6xd̂)

The fi are designed with three properties:

1. Because of fixed costs, only one function fi may be used at a time. Thus, if fi is used, agent
i+ 1 will get 0 units of utility, agent i will get 1 unit, and agent i− 1 will get 2.

2. For any choice of fi to use, the function fi+1 gives 2 units of utility to agent i, 1 unit to
agent i + 1 and 0 units to agent i − 1. Moreover, agents i and i + 1, both of whom strictly
prefer using fi+1, have both the endowment and production technology to achieve this result
in isolation. Thus, in the absence of d̂, there is always a defecting coalition.

3. Agents may opt out of the circle-of-death and use the deactivator good to produce utility if
present, but the “losing” agent in the cycle must be able to generate at least 1 unit of utility
if the cycle is to be broken, requiring ≥ 1

2 units of d̂.

Consequently, if < 1
2 units of d̂ are available in the economy, then the core is empty, i.e. some pair

of agents would always benefit from defecting.

Binary Counting Gadget. The gadget BCG(γ̂, ĵ0, . . . ĵc) treats xĵ0 , . . . xĵc as the binary repre-
sentation of a c-bit number x and produces x units of γ̂. It includes the following:

Goods: The “counting” good γ̂ and the c input bit goods ĵk.

Production: For each good ĵk:
xγ̂ = fk(xĵk) = 2k · xĵk .

Generalized Choice Gadget. The generalized choice gadget GChoice(ŝ, x1, . . . xc) is identical
to the choice gadget (see Section 3) except that the input good ŝ is provided by the economy and
the choice is over bundles xk instead of individual goods ĵk:

Goods: A source good ŝ and bundles x1,. . .xk over the space of all other goods Rm−1.

Production: Agent i owns firms with the following production functions:

∀jk : z = fjk(xŝ) = xk ·max(xŝ − 1, 0) .

Limit(ŝ, 2)
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B Appendix: Rational Reductions

B.1 Core Rationality

Proof: (of Theorem 4.1.) It is easy to certify that an allocation (x, y) is not in the core (i.e.
testing core membership is in coNP): demonstrate a coalition and an allocation (x′, y′) such that
the coalition strictly prefers (x′, y′) to (x, y). Thus, a core allocation (xc, yc) may be found in
FΣP

2 =FNPNP as follows: guess the core allocation and use an oracle call to check that it is in the
core.

Next, we give the reduction from the FΣP
2 -complete problem Σ2SAT [2]: find x1 such that

∀x2Φ(x1, x2) = 1. Let nΦ be the number of variables in Φ.
We will describe the economy in stages. The globally relevant parts of the economy include:

Agents: Two directors A and B.

For each variable χ in x1: two agents χ and χ̄.

Goods: One utility good γ̂i for each agent i.

One deactivator good for a circle-of-death, d̂.

Utilities: Agent i desires his utility good, i.e. ui(x) = xγ̂i .

Production: A circle of death COD(d̂).

Director A wants Φ to be true and director B wants it to be false. The circle of death will ensure
that Φ can never actually be falsified in a core allocation. (Note that the χ agents are defined only
for the variables in x1.)

In the first stage, director B decides whether to pick x1 himself or defer to director A:

Goods: Authorization goods âA and âB.

A choice source good ŝD,χ for each director D and variable χ in Φ.

Production: Director B has

Choice((2nΦ + 2) · âA, (2nΦ + 1) · âB)

Director A has
xd̂ = fd̂(x) = xaA

Limit(d̂, 1)

For each variable χ, each director D has

xsD,χ = fsD,χ(x) = xaD

Limit(ŝD,χ, 2)

The director D whose good âD is chosen will produce exactly two units of ŝD,χ for each variable

χ. If A is chosen, he will also produce one unit of d̂. (Because of the limit gadgets, the directors
have no other way to consume all the authorization goods, so, following Proposition 2.4, we may
assume that they do. This logic carries through the remainder of the construction.)

Next, the chosen director picks x1. Both directors D have the following infrastructure (note
that we use generalized choice gadgets as defined in Appendix A):
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Goods: For each variable χ in x1, two choice authorization goods âD,χ and âD,χ̄, and two assign-
ment goods χ̂ andˆ̄χ.

For each variable χ in x2, a choice source good ŝD,χ and two assignment goods χ̂ andˆ̄χ.

Production: Each director D owns, for each variable χ ∈ x1:

GChoice(ŝD,χ, 3âD,χ, 3âD,χ̄)

and for each variable χ ∈ x2:
GChoice(ŝD,χ, χ̂, ˆ̄χ) .

Each χ agent has (for both directors):

xχ̂ = fχ̂(x) = xâD,χ

Limit(xχ̂, 1)

(the χ̄ agents have similar functions).

In essence, the director produces x2 himself; however, though he chooses x1, he must delegate the
production of the χ̂ goods for x1 to the χ and χ̄ agents. The extra authorization good â will later
be used to generate utility.

Next Φ is evaluated:

Goods: True and false goods Φ̂TRUE and Φ̂FALSE to represent the value of Φ.

Production: Director B has a SATΦ({χ̂i}, { ˆ̄χi}, Φ̂TRUE , Φ̂FALSE) gadget to evaluate Φ given the
χ̂ and ˆ̄χ goods.

Note that a coalition of B and the χ agents may evaluate Φ without the help of any other agents.
Moreover, those same agents are required to compute Φ even if A is involved. This will restrict the
possible defecting coalitions.

Finally, agents receive their payoffs:

Goods: For each χ (resp. χ̄) agent and each director D, an intermediate utility good α̂D,χ (resp.
α̂D,χ̄).

Production: Director A has

xD,γ̂A = fγA(x) = min((2n+ 2) · xΦTRUE , xâA)

Limit(γ̂A, 1) .

Similarly, director B has

xγ̂A = fγA(x) = min((2n+ 2) · xΦFALSE , xâB )

Limit(γ̂A, 1) .

Each χ agent has, for each director D:

xα̂D,χ = fD,αχ(x) = xâD,χ

Limit(α̂D,χ, 1) ,

(and χ̄ have similar functions).
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Finally, each χ agent has

xγ̂χ = fA,γχ,χ(x) = min(xα̂A,χ , (2n+ 2) · xΦTRUE )

xγ̂χ = fA,γχ,χ̄(x) = 2 ·min(xα̂A,χ̄ , (2n+ 2) · xΦTRUE )

xγ̂χ = fB,γχ,χ(x) =
3

2
min(xα̂B,χ , (2n+ 2) · xΦFALSE )

xγ̂χ = fB,γχ,χ̄(x) =
3

2
min(xα̂B,χ̄ , (2n+ 2) · xΦFALSE )

(similar for the χ̄ agents).

Payoffs are summarized in the following table (D represents the chosen director):

Φ = 1, Φ = 0, Φ = 1, Φ = 0,
Agent D = A D = A D = B D = B
A 1 0 0 0
B 0 0 0 1

χ produces x1 1 0 0 3
2

χ does not produce x1 2 0 0 3
2

Agents A and B fight over whether Φ is true or false. In allocations where A makes Φ true,
the χ agents who don’t participate in producing x1 will get 2 units of utility and be happy, but the
agents who do produce x1 will only get 1 unit. Thus, if they can falsify Φ with B, the coalition
would rather defect and get 3

2 . Note that if they defect, the only setting of x1 that they can produce
is the one originally chosen by A (because any other setting requires the production firms of the χ
agents who got 2 and, therefore, would not want to join the coalition).

Since nobody gets any utility if Φ is not evaluated, we may assume that it is evaluated in any
core allocation. Moreover, for the same reason, A must be the director if Φ is evaluated to true,
and B must be the director if Φ is false. (A coalition of agents would clearly like to defect from an
allocation in which nobody receives any utility.)

For the moment, let us assume that the Σ2SAT instance is true, i.e. a “solution” x1 exists. In
this case, a core allocation is the one in which A picks an x1 that solves the Σ2SAT problem. In
this case, the only agents who could reasonably defect are B and the χ agents who produce x1.
However, as noted, they are bound by A’s choice of x1, therefore they will not be able to falsify Φ
and would receive no utility if they defect. Thus, the allocation is in the core. In contrast, if A
picks the wrong x1 and still tries to satisfy Φ, that same coalition will defect and falsify Φ on its
own. Finally, any allocation in which A is not in charge is precluded by the circle-of-death. The
case that no solution x1 exists is merely a subset of the cases mentioned above.

Thus, any core allocation must correspond to an x1 that “solves” the Σ2SAT instance. It follows
that core allocations are FΣP

2 -complete to compute.

Proof: (of Theorem 3.3) Given a SAT formula Φ, we construct an economy with the following
properties: if Φ is unsatisfiable, the economy has a trivial price equilibrium. If Φ is satisfiable,
then we get the economy in Section 4 of [6] that has no price equilibrium. The main trick is to

manipulate the set of production possibilities for the two goods â and b̂: when Φ is satisfiable, we
want it to be T = {xâ, xb̂|xâ ≤ 2 and xb̂ ≤ 2 and (xâ ≤ 1 or xb̂ ≤ 1)} (see the picture in [6]), and
when it is unsatisfiable, we want it to be F = {xâ, xb̂|xâ ≤ 1 and xb̂ ≤ 1} (this is a convex set, so
there will be a price equilibrium).

To accomplish this, we construct a SAT gadget, as above. When Φ is false, we have a false good.
We give agents the technology to turn this good into any quantity of goods â and b̂ from set F .
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Since this set is convex (and the other goods, i.e. those used in the SAT formula are not traded),
the economy has a price equilibrium. Now, when Φ is true, we allow the economy to produce from
T as follows: a choice gadget produces one of two intermediate goods. The first can be used in
production of any vector of goods up to â = 1 and b̂ = 2, while the other can be used in production
of any vector of goods up to â = 2 and b̂ = 1. It is straightforward to integrate the utilities and
endowments to make the example work.

B.2 Sequential Production with Isolation

Proof: (of Theorem 5.2.) Membership in F∆P
3 is the easy direction. As with core defections,

given a plan that represents a defection, it is easy (efficiently computable) to check. It follows that
an individually-rational production plan may be found in NP with an NP oracle (guess the plan
and use the oracle to verify its rationality). To find the optimal such plan, we maximize social
welfare. Thus, the problem lies in a generalization of OptP to the second level of the polynomial
hierarchy and, therefore, in F∆P

3 .
To prove that this problem is F∆P

3 -hard, we reduce from the F∆P
3 -complete problem lexico-

graphically maximum Σ2SAT [15], i.e. find the lexicographically maximum x1 such that for all x2,
Φ(x1, x2) = 1 (where Φ has nΦ variables). We define the following economy:

Agents: Two agents: agent A and B.

Goods: Two utility goods γ̂A and γ̂B.

An initial seed good ŝA.

Approval goods â and â′.

For each χ ∈ Φ, a source good ŝχ.

For each χ ∈ Φ, assignment goods χ̂ and ˆ̄χ.

True and false goods Φ̂TRUE and Φ̂FALSE .

For each agent and value of Φ, intermediate utility goods α̂, e.g. α̂A,TRUE .

For each χ ∈ x1, an “intermediate counting good” β̂χ.

Utilities: ui(x) = xγ̂i .

Endowments: For each χ ∈ x1, eA,ŝχ = 2.

Production: For each χ ∈ x1, agent A has

GChoice(ŝχ, [2χ̂, â], [2 ˆ̄χ, â],
1

nΦ
γ̂A) .

Agent B has
xâ′ = fa′(x) = |x2| ·max(xâ − (|x1| − 1), 0)

and for each χ ∈ x2

xŝχ = fsχ(x) = 2 · xâ′

GChoice(ŝχ, χ̂, ˆ̄χ) .

Agent B also has SATΦ({χ̂i}, { ˆ̄χi}, Φ̂TRUE , Φ̂FALSE) to evaluate Φ.

For payoffs, agent A has
xα̂A,TRUE = fαA,T (x) = 4 · xΦ̂TRUE
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Limit(α̂A,TRUE , 1)

xγ̂B = fγb(x) = 2 · xα̂A,TRUE
and agent B has

xα̂B,FALSE = fαB,F (x) = 4 · xΦ̂FALSE

Limit(α̂B,FALSE , 1)

xγ̂B = fγb(x) = 2 · xα̂B,FALSE .

Meanwhile, agent A has the following for each variable χ ∈ x1:

xβ̂χ = fβχ(x) = min(xχ̂, 2nΦ · ΦTRUE)

Limit(β̂χ, 1) .

and a binary counting gadget
BCG(γ̂A, β̂χ0 , β̂χ1 , . . . ) .

The economy functions in three stages. First, A picks x1. Once x1 is chosen, B picks x2 (the
structure of approval goods â ensures that no variable in x2 is chosen before all variables in x1 have
been fixed). Finally, payoffs are computed based on the results of evaluating Φ. Agent B receives
2 units if it is false, and agent A receives 2 + σ units if Φ is true, where σ is the value found by
taking x1 as the binary representation of a number. Agent A also has a default option to refuse to
produce x1, thereby generating a small amount of utility 0 < uA < 1. (The complicated structure
of intermediate goods merely ensures the correct discretization and distribution of goods.)

Production plans come in three flavors: satisfy Φ, falsify Φ, or neither. If Φ is satisfied, then
agent A will be happy. However, agent B would rather falsify Φ. Thus, if B can pick x2 so that
Φ is false, he will defect, since he does not need to interact with any other players once he has the
goods specifying x1. The only individually rational plan that satisfies Φ will include an x1 such
that Φ(x1, x2) is always true.

In plans that falsify Φ, agent A gets nothing and, therefore, will defect at the beginning and
choose the default option. Thus, no such plan may be individually rational.

Finally, in plans that do not compute Φ, agent B does not receive any utility, and A receives at
most 1 unit (from the default option). This is strictly dominated by any plan in which Φ is made
to true, so it can only be the optimal individually rational plan if for any x1, there exists an x2

such that Φ(x1, x2) is false.
Thus, if there is an x1 such that Φ(x1, x2) is always true, the optimal individually rational

production plan is the one in which A picks the x1 that maximizes σ, i.e. the lexicographically
maximum x1. In other cases, the only individually rational option is for A to take the default
option, signaling that no such x1 exists. It follows that computing an optimal individually rational
sequential production plan is equivalent to lexicographically maximum Σ2SAT and, therefore, is
F∆P

3 -complete.

C Average-Case Complexity Equilibrium

Proof: (Rough sketch for Theorem 6.4.) Consider modeling an economy as a set of agents on a
directed graph G = (V,E). Each vertex v ∈ V corresponds to an agent who, at time t, takes input
from incoming edges and distributes output on outgoing edges. Each agent may also elect to keep
some goods for himself (these are treated as extra inputs at time t+1). The economy is in a feasible
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configuration if the quantity of goods taken as input by vertex v equals the quantity of goods sent
to v as output by neighbors of v at time t. As in the choice gadget, we can use non-convexity to
force each agent to pick a discrete production task with his inputs.

In the Arrow-Debreu framework, we model this economy by creating a separate copy of the
goods and production functions for each time t and vertex v. (Note that this is precisely how
Arrow and Debreu [3] suggest modeling an economy over time and space.)

Hardness will follow because this economic model is a superset of an edge tiling problem defined
by Gurevich [10]. An edge tiling problem consists of a set of tiles T , an n × n square, and some
initial conditions. The goal is to place one tile at each location in the square such that adjacent
labels match and all initial constraints are satisfied.

Gurevich [10] shows that when the first row is randomly filled according to a certain “uniform”
distribution (i.e. the initial conditions) and all possible sets of tiles T occur with positive probability,
it is average-case NP-complete to decide if the n× n square may be tiled.

The edge tiling problem corresponds to an economy where agents are organized on a line. Each
agent chooses his production task (i.e. his tile) such that his inputs and outputs (i.e. the labels on
the left and right sides of a tile) match his neighbors. Each row of the tiling represents a time t, so
labels on the top and bottom edges of the tile correspond to goods saved by an agent. Similar to
the construction in Theorem 6.3, players only receive a payoff if the square is completely tiled.

Reducing from Gurevich shows that when production at time t = 0 (i.e. filling the first row) is
done according to the proper distribution, improving from payoff 0 in such an economy is average-
case NP-hard for any distribution over possible production tasks such that every set of tiles occurs
with positive probability.

The exact construction leverages fixed costs as in choice gadget to force discrete choices.

The economy in this proof is somewhat reasonable. It is powerful because the precise distri-
bution does not matter, provided it satisfies the very general condition that all sets of tiles are
possible. The linearity requirement is somewhat suspect, but is more an artifact of this particular
proof than a fundamental requirement for average-case hardness.

The main drawback of this construction is that it requires randomization over discrete produc-
tion tasks. In contrast, a more natural form of randomization would fix the discrete choices and
randomize over continuous parameters of those choices. We do not know of a natural construction
that does this.
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