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Abstract
Truthfulness is fragile and demanding. It is oftentimes computationally harder than solving the orig-

inal problem. Even worse, truthfulness can be utterly destroyed by small uncertainties in a mechanism’s
outcome. One obstacle is that truthful payments depend on outcomes other than the one realized, such
as the lengths of non-shortest-paths in a shortest-path auction. Single-call mechanisms are a powerful
tool that circumvents this obstacle — they implicitly charge truthful payments, guaranteeing truthful-
ness in expectation using only the outcome realized by the mechanism. The cost of such truthfulness is
a trade-off between the expected quality of the outcome and the risk of large payments.

We largely settle when and to what extent single-call mechanisms are possible. The first single-call
construction was discovered by Babaioff, Kleinberg, and Slivkins [BKS10] in single-parameter domains.
They give a transformation that turns any monotone, single-parameter allocation rule into a truthful-in-
expectation single-call mechanism. Our first result is a natural complement to [BKS10]: we give a new
transformation that produces a single-call VCG mechanism from any allocation rule for which VCG
payments are truthful. Second, in both the single-parameter and VCG settings, we precisely characterize
the possible transformations, showing that that a wide variety of transformations are possible but that all
take a very simple form. Finally, we study the inherent trade-off between the expected quality of the out-
come and the risk of large payments. We show that our construction and that of [BKS10] simultaneously
optimize a variety of metrics in their respective domains.

Our study is motivated by settings where uncertainty in a mechanism renders other known techniques
untruthful. As an example, we analyze pay-per-click advertising auctions, where the truthfulness of the
standard VCG-based auction is easily broken when the auctioneer’s estimated click-through-rates are
imprecise.

1 Introduction

In their seminal work that sparked the field of Algorithmic Mechanism Design, Nisan and Ronen [NR01]
made a striking observation: naı̈vely computing VCG payments for shortest-path auctions requires comput-
ing “n versions of the original problem.” In their case, it requires solving n+ 1 different shortest path prob-
lems in a network. Over the next decade, as researchers studied computation in mechanisms, they repeatedly
noticed that computing payments is harder than solving the original problem. Babaioff et al. [BBNS08] ex-
hibited a problem for which deterministic truthfulness is precisely (n + 1)-times harder than the original
problem. In the case of Nisan and Ronen’s own path auction, Hershberger et al. [HSB07] showed that
computing VCG prices for a directed graph requires time equivalent to

√
n shortest path computations.1
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Surprisingly, Babaioff, Kleinberg, and Slivkins [BKS10] recently showed that randomization eliminated
this difficulty for a large class of problems. They showed that, if in a single-parameter domain payments
need only be truthful in expectation, then they may be computed by solving the original problem only once.
They apply their result to Nisan and Ronen’s path auctions to get a truthful-in-expectation mechanism that
uses precisely one shortest-path computation and chooses the shortest path with probability arbitrarily close
to 1. We call this a single-call mechanism.

The usefulness of Babaioff, Kleinberg, and Slivkins’ result goes far beyond speeding up computation:
Their construction enables truthfulness in cases in which computing “n versions of the original problem”
is informationally impossible. To use again the Nisan-Ronen path auction, suppose that the graph repre-
sents a packet network with existing traffic. In this case, the actual transit times (i.e. costs to edges) may be
increased by congestion. While it is possible to estimate congestion ex ante, it is generally impossible to pre-
cisely know its effect without transmitting a packet and explicitly measuring its transit time. Unfortunately,
since VCG prices depend on the transit times for many different paths, naı̈vely computing them will inherit
any estimation errors. Even worse, when bidders have conflicting beliefs about such errors, naı̈vely com-
puting“VCG” prices with bad estimates may not guarantee truthfulness even if the errors are small enough
that they not affect the path chosen by the mechanism. In such a case, truthfulness may be regained using
a mechanism that only requires measurements along a single path, that is, a mechanism that only requires
measurements returned by a single call to the shortest-path algorithm. We will concretely demonstrate this
phenomenon later using an example based on pay-per-click advertising auctions.

An important question arises then: In which mechanism design problems, and to what extent, are single-
call mechanisms possible? In this paper we study, and largely settle, this question. First, we show that this
it is possible to transform any mechanism that charges VCG prices in expectation into a roughly equivalent
single-call mechanism. While similar in spirit to [BKS10], our reduction charges prices that are funda-
mentally different from the mechanism in that paper — they do not coincide even when applied to the same
allocation rule. Second, we give characterization theorems, delineating precisely the single-call mechanisms
that are possible, for both the VCG and single-parameter settings. Finally, single-call constructions offer
a tradeoff between expectation and risk. Our characterization theorems allow us to derive lower bounds
on this tradeoff, establishing that our VCG construction and the construction of [BKS10] are optimal in a
general sense.

Mechanisms, Allocations, and Payments One cornerstone of mechanism design is the decomposition
of a mechanism into two distinct parts: an allocation function and a payment function. This approach has
borne much fruit — it first revealed fundamental relationships between allocation functions and their nearly
unique truthful prices, and it subsequently allowed researchers to study the the two problems in isolation.
Like [BKS10], we leverage this decomposition to study payment techniques that apply to large classes
of allocation functions — naturally, our primary requirement is that the allocation function may only be
evaluated once.

We will focus on single-call mechanisms for two classes of allocation functions that, together, comprise
most allocation functions for which truthful payments are known: monotone single-parameter functions and
maximal in distributional range (MIDR) functions.

An allocation function is said to be single-parameter if an agent’s bid can be expressed as a single num-
ber. This setting was first studied by Myerson [Mye81] in the context of single-item auctions. Subsequent
generalizations showed that truthful prices existed if and only if a single-parameter allocation is mono-
tone and provided an explicit characterization of truthful payments. We will use one such characterization
developed by Archer and Tardos [AT01].

An allocation function is said to be maximal in distributional range (MIDR) if, for some fixed set of
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distributions over outcomes, the allocation always chooses one that maximizes the social welfare of the
bidders. MIDR allocation functions are important because they are precisely the ones for which VCG
payments are truthful [DD09].

Truthfulness Under Uncertainty Our motivation for developing and optimizing single-call mechanisms
comes from scenarios where nature prohibits computing an allocation more than once, most often due to
parameter uncertainty. We give a few examples here; more generally, we conjecture that most mechanism
design problems have similar variants.

In the uncertain shortest-path auction described earlier, truthful prices will depend on the incremental
effect of transit times adjusted for congestion. If the auctioneer generates the network traffic, he may be
able to predict the congestion in an edge better than the edge itself and use this prediction when computing
the shortest path. However, each edge may individually disagree with the auctioneer’s estimate, and these
beliefs are generally unknown to the auctioneer. If the auctioneer were to simply compute VCG payments
by combining his estimates with players’ bids, the prices would likely not be truthful. On the other hand,
we can require that payments are computed using measured transit times instead of estimates; however, it
is informationally impossible to know the precise delay along edges that were not actually traversed. A
single-call mechanism sidesteps this hurdle by using only the delays along traversed edges for which the
delay had been precisely known.

Machine scheduling offers another application for single-call mechanisms. In some applications (e.g.
cloud services), it is common for machines to bid in terms of cost per unit time (or other resource). It is then
the responsibility of the scheduler to estimate the time required for the job on that machine. If the scheduler’s
estimates differ from a machine’s belief about a job’s runtime, then we find ourselves in the same situation
as the path auction — the standard truthful prices for this single-parameter setting will depend on machines’
beliefs about the runtimes of jobs under alternate schedules. A single-call mechanism sidesteps this problem
because it requires only the runtimes of jobs under the schedule chosen by the mechanism, which may be
measured.

Another interesting example arises in the application of learning procedures such as multi-arm-bandits
(MABs). In recurring mechanisms, it is natural for the auctioneer to run a learning algorithm across multi-
ple auctions. For example, when an online advertising auction is repeated, the auctioneer tries to learn the
likelihood that a particular ad will get clicked. Computing truthful prices requires knowing what would have
happened if the learner had been initialized with a different set of bids. This setting was the original motiva-
tion of [BKS10], where they showed that their single-call construction allowed a MAB to be implemented
truthfully with O(

√
T ) regret. This contrasts with results of Babaioff, Sharma, and Slivkins [BSS09] and

Devanur and Kakade [DK09] who showed that any universally truthful mechanism must have regret at least
Ω(T

2
3 ) for different measurements of regret.

Finally, in Section 5 we analyze single-shot pay-per-click (PPC) advertising auctions. A PPC advertis-
ing auction ranks bidders using their pay-per-click bid (i.e. they only pay when they receive a click) and
an estimate of the probability of a click (the click-through rate, or CTR). If the bidders’ estimates of their
own CTRs are different from the auctioneer’s, truthful prices necessarily depend on bidders’ beliefs about
the CTRs, which are unknown.

Single-Call Mechanisms and Reductions Our tool for creating single-call mechanisms is the single-call
reduction, the main object of study in this paper. A single-call reduction is a transformation that takes an
allocation function as a black box and produces a truthful-in-expectation mechanism that calls the allocation
function once. Since the expected payment is equal to the truthful payment for the resulting mechanism, the
payments are dubbed implicit.
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Babaioff, Kleinberg, and Slivkins [BKS10] discovered such a reduction for single-parameter domains.
Using only the guarantee that the black-box allocation rule is monotone, their reduction produces a truthful-
in-expectation mechanism that implements the same outcome as the original allocation rule with probability
arbitrarily close to 1.2

VCG is a mechanism design framework much broader than single-parameter. Can we construct similar
single-call mechanisms that charge VCG prices? We answer this in the affirmative by giving a reduction pro-
ducing, for any MIDR allocation function, a single-call mechanism that charges VCG prices in expectation.
Analogous to [BKS10], our reduction transforms any MIDR allocation rule into a truthful-in-expectation
mechanism that implements the same outcome as the original allocation rule with probability arbitrarily
close to 1. However, our construction is fundamentally different in that the distribution of payments does
not coincide with [BKS10] when an allocation is both MIDR and single-parameter. This reduction can
guarantee truthfulness in multi-parameter mechanisms with uncertainty, as described above, and can also be
used to speed up payment computation in MIDR settings like Dughmi and Roughgarden’s [DR10] truthful
FPTAS for welfare-maximization packing problems.

We next ask what single-call reductions are possible? Babaioff et al. generalize to a class of self-
resampling procedures. Subsequent research [Har11] generalized further (and simplified substantially), but
concisely characterizing single-call reductions remained an open question. We give tight characterization
theorems, showing that a wide variety of reductions are possible and that payments have a very simple
characterization in both scenarios. The key technical idea is a simple proof equating a reduction’s expected
payments with those required for truthfulness, giving a sharp characterization of the parameters in the re-
duction. Our technique is a very simple alternative to the contraction mapping argument in [BKS10].

Finally, we ask what are the best single-call reductions? As noted above, known single-call reductions
choose an outcome different from the original allocation rule with some small probability δ. The penalty
for making δ small is that the payments may occasionally be very large — we study this tradeoff. Our
study is not unprecedented: [BKS10] asked, as an open question, if their reduction optimized payments with
respect to the welfare loss, and Lahaie [Lah10] show a similar tradeoff between the size and complexity of
kernel-based payments achieving ε-incentive compatibility in single-call combinatorial auctions.

We study the tradeoff inherent to single-call mechanisms with respect to three measures of expectation
— welfare, revenue, and a technical (but natural) precision metric — and two measures of risk — variance
and worst-case payments. We show that our VCG reduction and the single-parameter reduction of [BKS10]
simultaneously optimize the tradeoff between expectation and risk for all these criteria.

2 Preliminaries

A mechanism is a protocol among n rational agents that implements a social choice function over a set of
outcomes O. Agent i has preferences over outcomes o ∈ O given by a valuation function vi : O → R. The
function vi is private but is drawn from a publicly known set Vi ⊆ RO.

A deterministic direct revelation mechanismM is a social choice function A : V1 × . . . Vn → O, also
known as an allocation rule, and a vector of payment functionsP1, . . . , Pn wherePi : V1×. . . Vn → R is the
amount that agent i pays to the mechanism designer. When a direct revelation3 mechanism is instantiated,
each agent reports a bid bi ∈ Vi. The mechanism uses bids b = (b1, . . . , bn) to choose an outcomeA(b) ∈ O
and to compute payments Pi(b). The utility ui(vi, o) that agent i receives is ui(vi, o) = vi(o) − Pi. A

2The authors of [BKS10] have observed that their construction may be extended to any domain where the bid space is convex.
3“Direct revelation” means that an agent’s bid bi is an element of Vi. In general this need not be the case; however, by

the revelation principle, any social choice rule that may be truthfully implemented may be implemented as a direct revelation
mechanism that charges the same payments in equilibrium.
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mechanism is truthful (or incentive compatible) if bidding truthfully (i.e. bi = vi) is a dominant strategy.
Formally, for each i, each v−i ∈ V−i, and every vi, vi′ ∈ Vi, we have ui(vi, A(v)) ≥ ui(vi, A(vi

′, v−i)),
where v−i denotes the vector of valuations for all agents except agent i.

A mechanism is ex-post individually rational (IR) if agents always get non-negative utility, and mech-
anism has no positive transfers (NPT) if for each agent i and each v ∈ V , Pi(v) ≥ 0, i.e., the mechanism
never pays a player money.

A randomized mechanism is a distribution over deterministic mechanisms. Thus, A(b) and Pi(b) are
random variables. For randomized mechanisms, properties like truthfulness may be said to hold universally
or in expectation. A randomized mechanism is universally truthful if it is truthful for every deterministic
mechanism in its support. It is truthful in expectation if, in expectation over the randomization of the
mechanism, truthful bidding is a dominant strategy. Henceforth, we use truthful, IR, and NPT to mean
truthful in expectation unless otherwise noted.

MIDR Allocation Rules MIDR mechanisms are variants of VCG mechanisms, mechanisms that max-
imize social welfare and charge “VCG payments”. Formally, a VCG mechanism’s social choice rule
satisfies A(v) ∈ argmax

o∈O

∑
j vj(o), and its payments are Pi(v) = hi(v−i) −

∑
j 6=i vj(A(v)) for some

function hi : V−i → R. VCG payments are the only universal technique known to induce truthful
bidding. The most common implementation of VCG payments uses the Clarke-Pivot payment rule: set
hi(v−i) = max

o∈O
(
∑

j 6=i vj(o)), which gives the only payments that simultaneously satisfy truthfulness, IR,

and NPT.
More generally, any allocation rule that maximizes an affine function of agents’ valuations can be truth-

fully implemented with VCG payments. Moreover, Roberts’ theorem [Rob79] implies that in a general
setting (when Vi = RO), if A is onto (every outcome can be realized), then A has truthful payments if and
only if it is an affine maximizer. If the “onto” restriction is relaxed, a social choice function is truthfully
implementable with VCG payments if and only if it is (weighted) maximal-in-range (MIR) [NR07] or, for
randomized mechanisms, maximal-in-distributional-range (MIDR) [DD09]:

Definition 1 An allocation ruleA is MIDR if there is a setD of probability distributions over outcomes such
that A outputs a random sample from the distribution D ∈ D that maximizes expected welfare. Formally,
for each v ∈ V , A(v) = o ∼ D∗ where D∗ ∈ argmax

D∈D
Eo∼D[

∑
i vi(o)].

A weighted MIDR allocation rule maximizes the weighted social welfare
∑

iwivi(o) for wi ≥ 0.

Single-Parameter Domains A larger class of social choice rules can be implemented when Vi is single
dimensional. We say that a social choice rule has a single-parameter domain if vi(o) = tifi(o) for some
publicly known function fi : O → R+. The value ti ∈ Ti is an agent’s type (Ti is her type-space, and
T = T1 × · · · × Tn), and submitting i’s bid precisely requires stating bi = ti. When T = Rn+, we say that
bidders have positive types. We also use Ai(b) = fi(A(b)) as shorthand, and we say A is bounded if the
functions Ai are bounded functions.

A single-parameter social choice rule may be implemented if and only if it is monotone, where A : T →
O is said to be monotone if for each agent i, for all b−i ∈ T−i and for every two bids bi ≥ b′i, we have
Ai(bi, b−i) ≥ Ai(b

′
i, b−i). This was first shown for a single item auction by Myerson [Mye81]; Archer and

Tardos [AT01] gave the current generalization:
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Theorem 2.1 [Myerson + Archer-Tardos] For a single parameter domain, an allocation ruleA has truthful
payments (P1, . . . , Pn) if and only if A is monotone. These payments take the form

Pi(b) = hi(b−i) + biAi(bi, b−i)−
∫ bi

0
Ai(u, b−i) du,

where hi(b−i) is independent of bi.

These payments simultaneously satisfy IR and NPT if and only if Pi0(b−i) = 0. Such a mechanism is said
to be normalized.

3 Single-call mechanisms

We call a mechanism a single-call mechanism if it only evaluates the allocation function once:

Definition 2 A single-call mechanism M for an allocation rule A is a truthful mechanism that has only
oracle access to A and computes both the allocation and payments with a single call to A.

To construct a single-call mechanism, we must first specify the possible allocation functions A and then
construct one procedure that yields a single-call mechanism for any A in this set. Thus, the tool for creating
a single-call mechanism is a single-call reduction:

Definition 3 A single-call reduction is a procedure that takes any allocation function A from a fixed set (as
a black box) and returns a single-call mechanism.

For example, the procedure of [BKS10] is a single-call reduction that takes any A drawn from the set of all
monotone, bounded, single-parameter allocation rules and returns a single-call mechanism. Similarly, our
construction for VCG prices is a single-call reduction that takes anyA that is MIDR and returns a single-call
mechanism.

To formalize single-call reductions, we first note the following requirements:

• A reduction must take a bid vector b and a black-box allocation function A as input.

• A reduction must evaluate A on at most one bid vector b̂, causing the outcome A(b̂) to be realized.4

• A reduction must charge payments λi that are a function of b, b̂, and A(b̂) (and possibly its own
randomness).

These requirements suggest the following generic definition of a single-call reduction to turn an allocation
function A into a truthful-in-expectation single-call mechanismM = (A, {Pi}):

1. Solicit the bid vector b from agents.

2. Use b to compute the modified bid vector b̂. This implicitly defines a probability measure µb(B)
denoting the probability of choosing b̂ ∈ B ⊆ V1 × · · · × Vn as the modified (resampled) bid vector
when b is the actual bid vector. When b̂i 6= bi, we say that i’s bid was resampled.

4Strictly speaking, there may be settings where a single-call reduction could realize an outcome other than A(b̂). However,
our restriction follows naturally in scenarios where “computing A(b)” means realizing A(b) and making measurements. It is also
required for complete generality because there is no reason to believe that the designer knows how to realize any outcome other
than A(b̂).
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ALGORITHM 1: Generic Single-Call Reduction (µ, {λi})
input : Black box access to an allocation function A, which is drawn from a known set.
output: Truthful-in-expectation mechanismM = (A, {Pi}).

1 Solicit bid vector b from agents;
2 Sample b̂ ∼ µb;
3 Realize the outcome A(b̂); // A(b) is the random function A(b̂) where b̂ ∼ µb
4 Charge payments λ(A(b̂), b̂, b); // Pi(b) is the random function λi(A(b̂), b̂, b) where

b̂ ∼ µb

3. Declare the outcome to beA(b̂), i.e. evaluateA at the modified bid vector b̂. This implicitly defines the
allocation function A(b) which samples b̂ ∼ µb and chooses the outcome A(b̂). The resampling pro-
cedure must ensure that truthful payments P(b) exist for A(b); Note that A(b) and P(b) are random
variables that depend on the randomly resampled bid vector b̂. Also, A(b) and P(b) are randomized
even if A(b) and P (b) are deterministic;

4. Use b, b̂, and A(b̂) to compute payments λi(A(b̂), b̂, b) that satisfy truthfulness in expectation, that is,
charge player i a payment λi(A(b̂), b̂, b) such that E

b̂
[λi(A(b̂), b̂, b)] = E

b̂
[Pi(b)].

This general procedure is illustrated in Algorithm 1.
We describe a single-call reduction in the above framework by the tuple (µ, {λi}), where µ implies

specifying the resampling measure µb for all b ∈ V1×· · ·×Vn. Since payments should be finite, we require
that λi be finite everywhere, and we also require that it be integrable. For the rest of this paper, we assume
that λi’s are deterministic. For randomized λi’s, the characterization theorems still hold with λi’s replaced
by their expectations over the randomness used.

We say that a reduction is normalized if bi(A(b)) = 0 for all i implies λi(A(b̂), b̂, b) = 0, i.e. when
every agent receives zero value, all payments are zero.

3.1 Optimal Reductions — Expectation vs. Risk

There are two downsides to the mechanisms produced by single-call reductions. First, there is a penalty in
expectation, i.e., the expected outcome Eb̂[A(b̂)] produced by the reduction is not identical to the desired
outcome, A(b). This modified outcome may reduce the expected welfare or revenue of the mechanism, or it
may simply cause it to do the “wrong” thing.

Second, there is a penalty in risk because the payments λ may vary significantly, i.e. for a fixed b the
payments at different resampled bids b̂ could be very different. In particular, the magnitude of the payment
charged by the single-call mechanism may be much larger than the payments in the original mechanism, i.e.
it may be that |λi| � |Pi| for certain outcomes.

Our characterization theorems reveal that there is a fundamental trade-off between expectation and risk.
Thus, we call a reduction optimal if it minimizes risk with respect to a lower bound on the expectation.

3.1.1 Expectation

We study three criteria for measuring the expectation of a reduction: Pr(b̂ = b|b), social welfare, and
revenue.

The first criterion, Pr(b̂ = b|b) (the precision), measures the likelihood that the reduction modifies
players’ bids. This criterion is natural when modifying bids is inherently undesirable:
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Definition 4 The precision of a reduction αP is the probability that the reduction does not alter any player’s
bid:

αP ≡ min
b

Pr(b̂ = b|b) .

The other criteria measure standard quantities in mechanism design:

Definition 5 The welfare approximation αW of a single-call reduction is given by the worst-case ratio
between the welfare of the single-call mechanism and the welfare of the original allocation function:

αW = min
A,b

Eb̂ [
∑

i bi(Ai(b))]∑
i bi(Ai(b))

.

When the welfare of A is zero, αW = 1 if the welfare of A is also zero and unbounded otherwise.

Definition 6 The revenue approximation αR of a single-call reduction is given by the worst-case ratio
between the revenue of the single-call mechanism and the revenue of the original allocation function:

αR = min
A,b

Eb̂ [
∑

i Pi(b)]∑
i Pi(b)

.

When the revenue of A is zero, then αR = 1 when the revenue of A is also zero and unbounded otherwise.

In the case of continuous spaces we replace min/max with inf/sup as appropriate for infinite domains.

3.1.2 Risk

We measure risk through both the variance of payments and their worst-case magnitude.5 In order to make
a meaningful comparison across different allocation functions and bids, we normalize by players’ bids:6

Definition 7 Decompose λi into terms which depend only on the payoff to a single bidder j (i.e. on bj(A(b̂))

instead of A(b̂)):
λi(A(b̂), b̂, b) =

∑
j

λij(bj(A(b̂)), b̂, b)

(our characterizations in Sections 4 and 6 show that this is possible for our settings). Then the bid-
normalized payments of the reduction are given by∑

j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))
.

We can thus write the variance of bid-normalized payments as

max
A,i

Varb̂∼µb

∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))


and the worst-case magnitude as

max
A,i,b̂

∣∣∣∣∣∣
∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))

∣∣∣∣∣∣
where we replace min/max with inf/sup as appropriate for infinite domains.

5Intuition suggests optimizing with respect to a high-probability bound. Unfortunately, this is problematic because ignoring
low-probability events can dramatically change the expected payment. Thus, in general it is not reasonable to conclude a priori that
low-probability events can be ignored.

6Intuition also suggests normalizing by the truthful prices for A (i.e. by Pi), but constant allocation functions such as Ai(b) = 1
have Pi = 0, making this impossible. Bid-normalized payments are a next logical choice.
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3.1.3 Optimality

We define an optimal reduction as one that simultaneously optimizes the six-way trade-off between expec-
tation and risk:

Definition 8 A single-call reduction optimizes the variance of/worst-case payments with respect to preci-
sion/welfare/revenue for a set of allocation functions if for every bid b, it minimizes the variance of/worst-
case normalized payments over all possible reductions that achieve a precision of αP / welfare approxima-
tion of αW / revenue approximation of αR.

4 Maximal-in-distributional-range reductions

In this section, we show how to construct a single-call reduction for MIDR allocation rules, i.e. we show
how to construct a randomized, truthful mechanism from an arbitrary MIDR allocation rule A using only
a single black-box call to A. The main results are Theorem 4.1, a characterization of all reductions that
use VCG payments for an arbitrary MIDR allocation rule, and an explicit construction that optimizes the
expectation-risk tradeoff.

Truthful payments for MIDR allocation rules are given by VCG payments with the Clarke-Pivot rule:7

E[pi] = E[total welfare of bidders without i]−E[total welfare of bidders j 6= i with i] (1)

(where the expectation is over the randomization in the given MIDR allocation rule). The reduction
comes from this formula for E[pi]: we need to measure the welfare without agent i (the first term in the
RHS), so, with some probability, we ignore agent i and maximize the welfare of the remaining agents.
Intuitively, this is equivalent to evaluating the allocation function where i’s bid is changed to a “zero” bid
while other bids remain the same.

Unfortunately, having removed agent i, even with a small probability, means that computing truthful
payments for agent j 6= i requires knowing the allocation where both i and j are ignored. By induction,
a single-call mechanism must generate all sets of agents M ⊆ [n] with some probability. Thus, we get an
intuitive picture of the reduction’s behavior: it will randomly pick a set of bidders M ⊆ [n] and zero the
bids of agents not in M .

4.1 Characterizing Truthfulness

We consider reductions in which i’s resampled bid b̂i is always bi or zero,8 where “zero” means that the
agent has a valuation of zero for all outcomes. That is, the resampling measure µb(B) represents a discrete
distribution over the bids {b̂M} where M ⊆ [n] is a set of agents and

b̂Mi =

{
bi i ∈M
0 i 6∈M

Resampling to b̂M is equivalent to ignoring the welfare of agents outside M and evaluating A at b.
7If we relax the no positive transfers requirement, a trivial way to construct a single-call mechanism is to ignore the first term

in (1). However, the resulting mechanism would make a huge loss because no agent would ever pay the mechanism.
8Even if explicit “zero” bids are not known to the reduction, we assume that the reduction can induce A to optimize the utility

of an arbitrary subset of agents. Note that a black-box allocation function can only be turned into a truthful mechanism (even if
multiple calls to A are allowed) if it can ignore at least one bidder at a time, so our assumption is not unreasonable.
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In the most general setting, our restriction to zeroing reductions is without loss of generality because
b and zero are the only bids that are guaranteed to be valid inputs to A for all MIDR allocation functions
A. That said, even if a multi-parameter bid structure were known, VCG payments do not depend on the
outcome at any other bid. Thus, intuition suggests that resampling to other bids will not be helpful even if it
is possible. This intuition can be formalized, but we do not do it here.

Let π(M) be a distribution over sets M ⊆ [n]. We define the associated coefficients cπi (M) as:

cπi (M) =

{
−1, i ∈M
π(M∪{i})
π(M) , i 6∈M

Intuitively, cπi is the weighting that ensures −π(M ∪ {i})cπi (M ∪ {i}) = π(M)cπi (M) (where i 6∈ M ) to
match the terms in (1).

We prove the following characterization of all truthful MIDR reductions (π, {λi}) that work for all
MIDR A:

Theorem 4.1 A normalized single-call reduction, with VCG payments, for the set of all MIDR allocation
rules satisfies truthfulness, individual rationality, and no positive transfers in an ex-post sense if and only if
it takes the form (π, {λi}) where π(M) is a distribution over sets M ⊆ [n], the coefficients cπ(M)

i are finite,
and payments take the form

λi(A(b̂M ), b̂M , b) = cπi (M)
∑
j 6=i

bj(A(b̂M )) .

Proof: Recall that in general, a multi-parameter allocation function that can be rendered truthful by VCG
payments must be MIDR. Thus, our reduction must ensure that A is MIDR, and we first derive the implica-
tions of this requirement on the single-call reduction. We have already assumed that µb(B) is a distribution
over bids {b̂M}. Let πb(M) be the probability of selecting b̂M given b.

First, we show that A is always MIDR if and only if πb(M) does not depend on b. For the if direction,
if πb(M) is independent of b then A is a distribution over MIDR allocation rules, and by [DR10], such an
allocation rule is MIDR.

For the only if direction, we use contradiction. Assume that there are some bids x and y such that
πx(M) 6= πy(M) for some M . Then there exists a set S ⊆ [n] such that Prπ(M ⊆ S|x) 6= Prπ(M ⊆
S|y) (by contradiction and induction, start with S = ∅). Consider an allocation function that has welfare∑

i bi(A(b̂M )) = 0 for M ⊆ S and
∑

i bi(A(b̂M )) = 1 otherwise. The welfare of A will be precisely
1 − Prπ(M ⊆ S), implying that for either x or y, A did not chose the distribution that maximized social
welfare and is therefore not MIDR. Thus, the allocation ruleA is MIDR for all MIDRA if and only if µb(B)
is a discrete distribution π(M) independent of b.

Next, we write VCG payments for A that satisfy individual rationality and no positive transfers using
the Clarke-Pivot payment rule:

E[Pi] =
∑
j 6=i

∑
M⊆[n]

π(M)bj(A(b̂M\{i}))−
∑
j 6=i

∑
M⊆[n]

π(M)bj(A(b̂M ))

=
∑

M |i 6∈M

π(M ∪ {i})
∑
j 6=i

bj(A(b̂M ))−
∑

M |i∈M

π(M)
∑
j 6=i

bj(A(b̂M )) . (2)

By definition of λi(A(b̂M ), b̂M , b), we know that the expected payment made by i will be

E[Pi] =
∑
M⊆[n]

π(M)λi(A(b̂M ), b̂M , b) . (3)

10



The two formulas for payments in (2) and (3) must be equal:∑
M⊆[n]

π(M)λi(A(b̂M ), b̂M , b) =
∑

M |i 6∈M

π(M ∪ {i})
∑
j 6=i

bj(A(b̂M ))−
∑

M |i∈M

π(M)
∑
j 6=i

bj(A(b̂M )) .

Since A may be any MIDR allocation function, the only way this can hold is when terms corresponding to
each M are equal, i.e., for all i, M

π(M)λi(A(b̂M ), b̂M , b) =

{
π(M ∪ {i})

∑
j 6=i bj(A(b̂M ), i 6∈M

−π(M)
∑

j 6=i bj(A(b̂M )) i ∈M .
(4)

To see that this is necessary, construct two allocation functionsA andA′ such that bj(A(b̂M )) = bj(A
′(b̂M ))

for all M 6= M̄ and bj(A(b̂M̄ )) = 0. It immediately follows that if the reduction works for both A and A′,
then (4) must hold for M̄ under A. Since M̄ is arbitrary, it follows that (4) must hold for all M .

The theorem immediately follows from the above equality.

Remark 1 Note that this theorem forbids some distributions π(M) from being used to construct a single-
call reduction — in particular, it requires that π(M) > 0 for allM ⊆ [n], otherwise some payment λi(·) will
be infinite for nontrivial allocation rules. For example, an obviously forbidden distribution is the one that
never changes bids, i.e. the one with π([n]) = 1. This matches the intuition that a single-call mechanism
must occasionally modify bids.

4.2 A Single-Call MIDR Reduction

We now give an explicit single-call reduction for MIDR allocation functions. Our reduction MIDRtoMech(A, γ)
(illustrated in Algorithm 2) is defined by the following resampling distribution π̄ parameterized by a constant
γ ∈ (0, 1):

π̄(M) = γn−|M |(1− γ)|M | (5)

That is, each agent i is independently dropped from M with probability γ. Thus sampling from the dis-
tribution π̄ is computationally easy. Following Theorem 4.1, we charge payments λi(A(b̂M ), b̂M , b) =
cπ̄i (M)

∑
j 6=i bi(A(b̂M )) where

cπ̄i (M) =

{
−1, i ∈M
1−γ
γ , i 6∈M

Corollary 4.2 (of Theorem 4.1) The mechanism

M = (A, {Pi}) = MIDRtoMech(A, γ)

calls A once and it satisfies truthfulness, individual rationality, and no positive transfers in an ex-post sense
for all MIDR A.

4.3 Optimal Single-Call MIDR Reductions

We now prove that the construction MIDRtoMech(A, γ) is optimal for the definitions of optimality given
in Section 3. Theorem 4.1 implies that the bid-normalized payments will be∑

j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))
= (n− 1)cπi (M)

Thus, it is sufficient to optimize the variance as maxi VarM∼πc
π
i (M) and the worst-case as maxi,M |cπi (M)|.
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ALGORITHM 2: MIDRtoMech(A, γ) — A single-call reduction for MIDR allocation functions
input : MIDR allocation function A.
output: Truthful-in-expectation mechanismM = (A, {Pi}).

1 Solicit bids b from agents;
2 for i ∈ [n] do

with probability 1− γ
Add agent i to set M ;

otherwise
Drop agent i from M ;

3 Realize the outcome A(b̂M );
4 Charge payments

λi(A(b̂M ), b̂M , b) =
(∑

j 6=i bj(A(b̂M ))
)
×

{
−1, i ∈M
1−γ
γ , i 6∈M

;

4.3.1 Optimizing Risk vs. Precision

Theorem 4.3 The reduction MIDRtoMech(A, γ) uniquely minimizes both the payment variance and the
worst-case payment among all reductions that achieve a precision of at least αP = (1− γ)n.

That is, for any other distribution π with precision π([n]) ≥ (1 − γ)n, the payment variance is larger,
i.e.

max
i

VarM∼πc
π
i (M) > max

i
VarM∼π̄c

π̄
i (M) ,

and the worst-case payment is larger, i.e.

max
i,M
|cπi (M)| > max

i,M
|cπ̄i (M)| .

Proof: First we prove optimality for the worst-case payment maxi,M |cπi (M)| by contradiction. Assume
that some distribution π(M) does as well as π̄(M). Then it must be that maxi,M cπi (M) ≤ maxi,M cπ̄i (M)
(the largest coefficient is not bigger), and π([n]) ≥ π̄([n]) = αP (it respects the lower bound on precision).
Since max cπ̄i (M) = 1−γ

γ , it must be that for all M and i 6∈M ,

π(M ∪ {i})
π(M)

≤ max
i,M

cπ̄i (M) =
1− γ
γ

=
π̄(M ∪ {i})
π̄(M)

.

Therefore, for any bidder i, it must be that

π([n])

π([n] \ {i})
≤ π̄([n])

π̄([n] \ {i})
.

Since π([n]) ≥ π̄([n]), it follows that π([n] \ {i}) ≥ π̄([n] \ {i}). Repeating this argument, it follows by
induction that π(M) ≥ π̄(M) for any set M .

However, we also know that both π(M) and π̄(M) are distributions so both have to sum to one over all
M . Given that π(M) ≥ π̄(M) for all M , this implies π(M) = π̄(M). Thus, π̄(M) is uniquely optimal.
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Second, we argue that π̄ optimizes the payment variance. The variance of bidder i’s payments is

VarM∼πc
π
i (M) =

∑
M⊆[n]

π(M) (cπi (M))2 −

 ∑
M⊆[n]

π(M)cπi (M)

2

=
∑
M⊆[n]

π(M) (cπi (M))2 − 0

=
∑

M⊆[n]\{i}

(π(M) + π(M ∪ {i})π(M ∪ {i})
π(M)

This is minimized when Pr(i ∈ M) is independent of other bidders (Lemma D.10), i.e. π(M∪{i})
π(M) = 1−γi

γi
for some constant γi. For such a distribution, the precision will be

π([n]) =
∏
i

(1− γi) .

It follows that the maximum variance is maxi
1−γi
γi

, and it will only be minimized when γi = γj for all
i 6= j, which corresponds precisely to the distribution π̄.

4.3.2 Optimizing Risk vs. Welfare

A natural optimization metric is the social welfare of A (indeed, this was an open question from [BKS10]
in the single-parameter setting).

Unfortunately, since MIDR allocation rules may generate negative utilities and remain MIDR under
additive shifts of the valuation function, one can make the welfare approximation arbitrarily bad (indeed,
even undefined) by subtracting a constant from each player’s valuation. Thus, if valuation functions may be
negative, we cannot meaningfully optimize the loss in social welfare.

However, when valuation functions are known to be nonnegative, then the following lemma shows that
the worst-case welfare approximation is bounded:

Lemma 4.4 The reduction MIDRtoMech(A, γ) obtains an αW = mini Prπ(i ∈M) = 1− γ approxima-
tion to the social welfare, and there is an allocation function A and bid b such that this bound is tight.

The idea for the lower bound is that the sum of welfare of bidders in M cannot be lower at A(b̂M ) than
at A(b̂[n]) because that would imply A did not maximize the social welfare of bidders in M at b̂M . The
worst case scenario occurs when one player receives all the welfare. The proof is given in Appendix B.

Using this lemma, we can show that MIDRtoMech(A, γ) is optimal:

Theorem 4.5 The reduction MIDRtoMech(A, γ) minimizes payment variance and worst-case payments
among all reductions that achieve a welfare approximation of at least αW = 1− γ.

The proof is given in Appendix B.

4.3.3 Optimizing Risk vs. Revenue

The following lemma implies that a lower bound on the factor of approximation to revenue is equivalent to
a lower bound on precision.
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Lemma 4.6 The reduction MIDRtoMech(A, γ) obtains an απ = π([n]) = (1− γ)n approximation to the
revenue, and this is tight.

Since Theorem 4.3 says that MIDRtoMech(A, γ) optimizes payments with respect to precision, it sim-
ilarly follows that it optimizes payments with respect to revenue:

Theorem 4.7 The reduction MIDRtoMech(A, γ) minimizes payment variance and the worst-case payment
among all reductions that guarantee an αR = (1− γ)n approximation to revenue.

5 A Single-call application — PPC AdAuctions

Pay-per-click (PPC) AdAuctions are a prime example of mechanisms in which uncertainty can destroy
truthfulness. There is a deep literature on truthful ad auctions, much of which makes a powerful assumption:
the likelihood that a user clicks in any given setting is a commonly-held belief. In reality, this simply
is not true. Auctioneers make their best effort to estimate the likelihood of a click; however, anecdotal
evidence [Jab10] suggests that advertisers manipulate their bids according to the perceived accuracy of the
auctioneer’s estimates. As we will illustrate in this section, even if the auctioneer’s estimates are good
enough to (say) maximize welfare given the current bids, they are not sufficient to compute truthful prices.
We show that single-call mechanisms can recover truthfulness in PPC ad auctions in spite of these conflicting
beliefs.

In a standard PPC ad auction, n advertisers compete form� n slots. The value to an advertiser depends
on the likelihood of a click, called the click-through-rate (CTR) c, and the value to the advertiser once the
user has clicked, the value-per-click v. The expected value to an advertiser is thus cv. The auctioneer’s job
is to assign advertisers to slots and compute per-click payments — bidders are only charged when a click
occurs. Both tasks require knowing the CTRs for common objectives like welfare or revenue maximization,
so the auctioneer must also maintain estimates of the CTRs, which we denote by c′.

Researchers generally acknowledge that, in reality, both c and v may depend arbitrarily on the outcome
— they certainly depend on the quality and relevance of the particular ad being shown, but they also depend
on where the ad is shown and on which other ads are shown nearby. However, for analytical tractability, the
parameters c and v are often assumed to have a very restricted structure. We discuss two different structures
to illustrate the pervasiveness of the problem caused by estimation error and to show how different single-
call reductions may be applied.

Outcome-Independent Values and Separable CTRs In the ad auction literature, it is common to assume
that a bidder’s value-per-click vi is independent of the assignment and that the CTR is separable, that is, it
takes the form c = αjβi, where βi depends only on the ad and αj depends only on the slot j ∈ [m] where
the ad is shown. Unfortunately, even in this restricted setting, estimation errors may break the truthfulness
of VCG prices. We give an example in Appendix A showing that even if the auctioneer’s estimates correctly
identify the welfare-maximizing allocation, they may not yield truthful prices, even in the special case where
βi = 1.

In the language of allocations and payments, truthfulness is broken because the auctioneer only knows
an estimate of A and thus does not have enough information to compute true VCG prices. However, once
ads are shown, clicks may be measured, giving an unbiased estimate of bidders’ values. Unfortunately, this
can only be done once — since the auctioneer only has one opportunity to show ads to the user, these unbi-
ased estimates can only be measured under a single advertiser-slot assignment. Fortunately, these unbiased
estimates are exactly the information required to compute truthful payments using a single-call mechanism.
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Since a player’s bid bi is merely its value-per-click vi, this version of a PPC ad auction is a single-
parameter domain and we can apply the result of [BKS10]. Their result says that we can turn any monotone
allocation rule into a truthful-in-expectation mechanism — maximizing welfare subject to estimates α′j and
β′i is a monotone allocation rule as long as the estimates α′j have the same order as αj (i.e. α′j1 ≥ α′j2 if
αj1 ≥ αj2), so [BKS10] gives a truthful mechanism for almost any estimates:

Theorem 5.1 Consider a single-parameter PPC auction with separable CTRs and let APPC be the allo-
cation rule that maximizes welfare using estimated CTR parameters α′j and β′i, where the estimates α′j are
properly ordered. Then SPtoMechBKS(APPC , γ), the single-call reduction of [BKS10], gives a mecha-
nism that is truthful in expectation and has expected welfare within a factor of (1− γ)n of APPC .

Outcome-Dependent Values and CTRs While most research uses single-parameter models for analytical
tractability, an advertiser’s value-per-click v really depends on the advertiser-slot assignment chosen by the
auctioneer as noted earlier. As in the preceding single-parameter setting, estimated CTRs are insufficient
to guarantee truthfulness; however, the reduction of [BKS10] no-longer applies in such a multi-parameter
domain — we show how our MIDR single-call reduction can be used to recover truthfulness.

To capture the dependence on the advertiser-slot assignment, we assume that a bidder’s CTR ci,j and
value-per-click vi,j depend arbitrarily on both the bidder i and the slot j. Since the only allocation rules
that have truthful prices in general multi-parameter domains are MIDR, we assume that the auctioneer can
generate a MIDR allocation, specifically we assume the auctioneer can query an oracle to determine the
allocation that maximizes the welfare of any set of bidders under the actual bid b (but not necessarily for an
arbitrary bid b) and apply our MIDR reduction:

Theorem 5.2 Consider a multi-parameter PPC auction where a bidder’s value-per-click vi,j depends on the
bidder and the slot. Let APPC be an allocation rule that chooses the advertiser-slot assignment returned by
the welfare-maximizing oracle described above. Then the mechanism MIDRtoMech(APPC , γ) is truthful
in expectation and approximates the welfare of APPC to within a factor of (1− γ).

6 Single-parameter reductions

In this section, we characterize truthful reductions for single-parameter domains and show that the con-
struction of [BKS10] is optimal. Theorem 6.1 characterizes all reductions that are truthful for an arbitrary
monotone, bounded, single-parameter allocation function A. Our characterization is more general than
the self resampling procedures described by Babaioff et al. and shows that a wide variety of probability
measures may be used to construct a truthful reduction. Theorem 6.3 shows that the construction given in
Babaioff et al. is optimal among such reductions for a fixed bound on the precision, welfare approximation,
or revenue approximation of the reduction.

As in the MIDR setting, truthful payments give intuition for the structure of a single-call reduction. As
noted in Section 2, payments are truthful if and only if they are given by the Archer-Tardos characterization:

pi(b) = biAi(b)−
∫ bi

0
Ai(u, b−i)du . (6)

Loosely speaking, this says “charge i the value she receives minus what she would expect if she lowered her
bid.” Thus, a single call reduction should, with some probability, lower agents’ bids to compute the value of
allocation function at (u, b−i) for u ≤ bi.
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6.1 Characterizing Single-Call Reductions

For the sake of intuition, we start with the special case that the resampling measure µb has a nicely behaved
density representation fb(b̂) (the resampling density) that is continuous in b̂ and b. The proof for arbitrary
measures µb requires significant measure theory and is deferred until Appendix C.

Define the coefficients cfi (b̂, b) as cfi (b̂, b) = 1− 1
bi

∫ bi
0

fu,b−i (b̂)

fb(b̂)
duwhen bi 6= 0, and to be 0 when bi = 0.

We characterize truthful reductions as follows:

Theorem 6.1 A normalized single-parameter reduction (f, {λi}) for the set of all monotone bounded single-
parameter allocation functions satisfies truthfulness, individual rationality and no positive transfers in an
ex-post sense if and only if the following conditions are met:

1. The resampling density fb is such that the single-call mechanism’s randomized allocation procedure
Ai(b) is monotone in expectation, i.e., for all agents i, for all b, and b′i ≥ bi, Eb̂∼fb [Ai(b

′
i, b−i)] ≥

Eb̂∼fb [Ai(b)]. (See below.)

2. The resampling density fb is such that fb(b̂) 6= 0 if
∫ bi

0 fu,b−i(b̂)du 6= 0.9

3. The payment functions λi(A(b̂), b̂, b) satisfy: λi(A(b̂), b̂, b) = bic
f
i (b̂, b)Ai(b̂) almost surely, i.e. for

all b̂ except possibly a set with probability zero under fb.

Proof: (See Appendix C for the proof when µb is an arbitrary measure.)
Necessity. The first condition, that A must be monotone in expectation, follows directly from Archer-

Tardos characterization of truthful allocation functions. The second and third conditions, as we prove below,
are necessary for the expected payment to take the form required by the Archer-Tardos characterization.

The allocation function A is a single-parameter allocation function, so the Archer-Tardos characteriza-
tion gives truthful prices if they exist:

E[Pi] = biEb̂∼fb [Ai(b)]−
∫ bi

0
Eb̂∼fu,b−i

[Ai(u, b−i)]du

= biEb̂∼fb [Ai(b̂)]−
∫ bi

0
Eb̂∼fu,b−i

[Ai(b̂)]du

= bi

∫
b̂∈Rn

Ai(b̂)fb(b̂)db̂−
∫ bi

0

∫
b̂∈Rn

Ai(b̂)fu,b−i(b̂)db̂du .

Rearranging, where changing the order of integration may be justified by Tonelli’s theorem, gives

E[Pi] =

∫
b̂∈Rn

fb(b̂)biAi(b̂)

(
1− 1

bi

∫ bi

0

fu,b−i(b̂)

fb(b̂)
du

)
db̂ .

By construction, we can express the expected price as

E[Pi] =

∫
b̂∈Rn

fb(b̂)λi(A(b̂), b̂, b)db̂ .

Thus truthfulness in expectation necessarily implies∫
b̂∈Rn

fb(b̂)λi(A(b̂), b̂, b)db̂ =

∫
b̂∈Rn

fb(b̂)biAi(b̂)

(
1− 1

bi

∫ bi

0

fu,b−i(b̂)

fb(b̂)
du

)
db̂ . (7)

9This condition effectively requires cfi (b̂, b) to be finite.
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Note that proving the necessity of condition three in the theorem is equivalent to proving that the integrands
in the LHS and the RHS of (7) are equal almost everywhere. That is, we have to show that the only way for
Equation (7) to hold for all monotone bounded A is when the integrands are equal almost everywhere. To
show this, it is sufficient to show that Equation (7) must still hold if we restrict the range of integration to
an arbitrary rectangular parallelepiped (hence forth called as rectangle) S ⊆ Rn (see why this is enough in
Appendix C for a more general setting), that is, it is sufficient to show that for all rectangles S ⊆ Rn∫

b̂∈S
fb(b̂)λi(A(b̂), b̂, b)db̂ =

∫
b̂∈S

fb(b̂)biAi(b̂)

(
1− 1

bi

∫ bi

0

fu,b−i(b̂)

fb(b̂)
du

)
db̂ . (8)

Showing (8) would be straight-forward if we are given that (7) holds for all A — we could take any A and
make it zero for all points not in S, and then (7) immediately implies (8). However (7) is guaranteed to be
true only for monotone bounded A, since those are the allocation functions that could possibly be input to
our reduction. To see that it is still true when (7) is only guaranteed for monotone bounded A, define the
function 1S(b̂) as

1S(b̂) =

{
1, b̂ ∈ S
0, otherwise.

Observe that 1S can be written as 1S(b̂) = 1+
S (b̂) − 1−S (b̂) where 1+

S and 1−S are both {0, 1}, monotone
functions. Moreover, the functions A+(b) = 1+

S (b)A(b) and A−(b) = 1−S (b)A(b) are also monotone, and
they agree with A on S. If we plug A+ and A− into (7) and subtract the results, we get precisely (8). Thus
condition three is necessary.

For the necessity of condition two, note that if it were not to hold, the coefficients cfi will become −∞,
and hence the payments as defined in condition three will not be finite. Clearly finiteness of payments is a
requirement.

This proves that all three conditions in the theorem are necessary for truthfulness.
Sufficiency. We now show that the three stated conditions are sufficient. In a single-parameter setting,

for a mechanism to be truthful, we need the allocation function to be monotone in expectation and the pay-
ment function to satisfy the Archer-Tardos payment functions. Condition one guarantees that the allocation
function output by the single-call reduction is a monotone in expectation allocation function. It remains
to show that the second and third conditions result in payments that agree with Archer-Tardos payments.
Given condition two, finiteness of payments as defined in condition three is satisfied. All we need to show
is that under the formula of λi(A(b̂), b̂, b)) described in condition three, the single-call payments match in

expectation with Archer-Tardos payments, i.e., (7) holds. Since cfi (b̂, b) = 1− 1
bi

∫ bi
0

fu,b−i (b̂)

fb(b̂)
du, taking

λi(A(b̂), b̂, b) = bic
f
i (b̂, b)Ai(b̂) a.s.

trivially satisfies (7), implying that the reduction is truthful.

Unfortunately, our assumption that µb has a density representation is unreasonable. Most significantly,
one would expect b̂ = b with some nonzero probability, implying that µb would have at least one atom for
most interesting distributions. In particular, the distribution used in the BKS transformation has such an
atom, so it cannot be analyzed in this fashion.

To handle general measures µb we apply the same ideas using tools from measure theory. A full proof
is given in Appendix C.
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ALGORITHM 3: SPtoMechBKS(A, γ) — The BKS reduction for single-parameter domains
input : Bounded, monotone allocation function A.
output: Truthful-in-expectation mechanismM = (A, {Pi}).

1 Solicit bids b from agents;
2 for i ∈ [n] do

with probability 1− γ
Set b̂i = bi;

otherwise
Sample xi uniformly at random from [0, b̂i];

Set b̂i = bix
1

1−γ
i ;

3 Realize the outcome A(b̂);
4 Charge payments

λi(A(b̂M ), b̂M , b) = biAi(b̂)×

{
1, b̂i = bi
1−γ
γ , b̂i < bi

;

6.2 The BKS Reduction for Positive Types

The central construction of Babaioff, Kleinberg, and Slivkins [BKS10] is a reduction for scenarios where
bidders have positive types.10

Their resampling procedure (implicitly defining µb) is described Algorithm 3. In the language of our
characterization, the coefficients cBKSi are

cBKSi (b̂, b) =

{
1, b̂i = bi

1− 1
γ otherwise.

They proved that SPtoMechBKS(A, γ) is truthful. This fact can be easily derived from Theorem 6.1:

Theorem 6.2 (Babaioff, Kleinberg, and Slivkins 2010.) For all monotone, bounded, single-parameter al-
location rules A, the single-call mechanism given by SPtoMechBKS(A, γ) satisfies truthfulness and no
positive transfers in an ex-post sense and is ex-post universally individually rational.

6.3 Optimal Single-Call Reductions

Analogous to our MIDR construction, we show that, the BKS construction for positive types is optimal
with respect to precision, welfare, and revenue as defined in Section 3 (other type spaces are discussed
in Appendix C). Using our characterization from Theorem 6.1, the bid-normalized payments we wish to
optimize will be ∑

j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))
=
cµi (b̂, b)biAi(b̂)

biAi(b̂)
= cµi (b̂, b) .

Thus, optimizing variance of normalized payments is equivalent to optimizing maxi Varb̂∼µbc
µ
i (b̂, b), and

optimizing the worst-case normalized payment is equivalent to optimizing supi,b̂ |c
µ
i (b̂, b)|.

10They also give a reduction that applies to more general type spaces, but we do not state it here.
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For this section, we make a “nice distribution” assumption that for any u 6= bi, Pr(b̂i = u|b) = 0. That
is, if we compute the marginal distribution of b̂i, the only bid b̂i that has an atom is bi (other bids only have
positive density). We handle the general case in the full proofs in Appendix D.

Our main result is that the BKS transformation is optimal:

Theorem 6.3 The single-call reduction SPtoMechBKS(A, γ) optimizes the variance of bid-normalized
payments and the worst-case bid-normalized payment

for every b subject to a lower bound α = (1− γ)n ∈ (1
e , 1) on the precision, the welfare approximation,

or the revenue approximation.

To prove Theorem 6.3, we first show that the three metrics we study are equivalent for interesting
reductions in the single parameter setting:

Lemma 6.4 For α > 1
e and n ≥ 2, a reduction that optimizes the variance of normalized payments or

the maximum normalized payment subject to a precision constraint of Pr(b̂ = b|b) ≥ α also optimizes the
maximum payment subject to a welfare or revenue approximation of α.

Proof: (Sketch. The full proof is in Appendix D.) Consider the following allocation function:

Ai(b) =

{
1, b ≥ b̄
0, otherwise.

Intuitively, a reduction should not resample to higher bids because Archer-Tardos payments do not depend
on higher bids, and hence no useful information is obtained through raising bids. However, if a reduction
never raises bids (i.e. Pr(b̂ ≤ b|b) = 1), then the welfare and revenue of a single-call reduction will both be
precisely Pr(b̂ = b|b) if we consider the above mentioned A at a bid of b̄.

Thus, to prove Theorem 6.3, it is sufficient to prove that the BKS reduction optimizes precision.

Theorem 6.5 The single-call reduction SPtoMechBKS(A, γ) optimizes the variance of normalized pay-
ments and the worst-case normalized payment among reductions with a precision of at least αP = (1 −
γ)n > 1

e .

Proof: (Sketch. The full proof is in Appendix D.) When Pr(b̂ = b|b) is large, the mechanism extracts a
modest payment from i when b̂i = bi and pays a large rebate otherwise. Thus, we bound inf b̂,i c

µ
i (b̂, b). Let

πµ(M, b) be the probability (given b) that b̂i = bi for all i ∈M and b̂i < bi for all i 6∈M . Then the key step
is to prove the following lower bound on inf cµi :

inf
b̂
cµi (b̂, b) ≤ −π

µ(M ∪ {i}, b)
πµ(M, b)

.

Notably, this bound takes the same form as the truthful payment coefficients for MIDR reductions. Applying
the same logic as Theorem 4.3 shows that the BKS transformation is optimal.
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A A PPC Auction Example

The following example illustrates how the welfare optimal assignment may be robust to inaccuracies in the
CTR estimates c′ but the truthful payments are quite fragile.

Example 1 Consider a 2-slot, 2-advertiser setting with CTRs cj and bids bi. Assume that b1 > b2 and
c1 > c2, so that the welfare-optimizing assignment is to assign ad-1 to slot-1 and ad-2 to slot-2, i.e.,

c1b1 + c2b2 ≥ c1b2 + c2b1 . (9)

The auctioneer wishes to optimize welfare, so he uses c′j to implement the VCG allocation. It is quite plau-
sible that maximizing welfare w.r.t c′j results in the same welfare maximizing allocation, namely given (9), it
is not unreasonable to assume that the following is true if the auctioneer’s estimates are good enough:

c′1b1 + c′2b2 ≥ c′1b2 + c′2b1 .

However, we will show that this is not enough to guarantee truthfulness.
We show that advertiser-1 may have an incentive to lie. According to the estimates c′j , The expected

VCG payment should be c′1b2 − c′2b2. Since advertiser 1 will only be charged when he actually receives a
click, the price-per-click charged will be

p1 =
1

c′1
[c′1b2 − c′2b2] .

and the expected utility to bidder i will be

u1 = c1

(
b1 −

1

c′1
[c′1b2 − c′2b2]

)
,

where the extra c1 gets multiplied because the utility is non-zero only upon a click, which happens with
probability c1.

Now, for example, let the inaccurate c′j be as follows: c′1 = αc1, c′2 = c2 where α > 1. Notice that in
this example we always have

αc1b1 + c2b2 ≥ αc1b2 + c2b1

and thus the mechanism will always maximize welfare in spite of the estimation errors.
The utility of advertiser-1 will be

u1 = c1

(
b1 −

1

αc1
[αc1b2 − c2b2]

)
.

Now, suppose advertiser-1 decides to lie and bid zero, he gets the second slot, pays zero, and gets utility of
c2b1. Lying is clearly profitable if

c2b1 > c1

(
b1 −

1

αc1
[αc1b2 − c2b2]

)
.
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Rearranging, lying is profitable if

αc1b1 + c2b2 < αc1b2 + αc2b1 (10)

It is quite possible that lying might be profitable, that is inequality (10) holds true. For example, if c1 = 0.1,
c2 = 0.09, b1 = 1.1, b2 = 1, and α = 1.1, payments computed using c′j are nontruthful, even though the
mechanism always picks the welfare-maximizing assignment for any α > 1.

B Optimality Proofs for MIDR Reductions

B.1 Optimizing Social Welfare

Lemma B.1 (Restatement of Lemma 4.4) The reduction MIDRtoMech(A, γ) obtains anαπ = mini Prπ(i ∈
M) approximation to the social welfare, and there is an allocation functionA and bid b such that this bound
is tight.

Proof: The expected social welfare of the single-call mechanism, where the expectation is over the random-
ness in the resampling function is given by E

[∑
j∈[n] bj(A(b))

]
. We now prove the required lower bound

on this quantity.

E

∑
j∈[n]

bj(A(b))

 =
∑
j∈[n]

∑
M⊆[n]

π(M)bj(A(b̂M )) =
∑
M⊆[n]

π(M)
∑
j∈[n]

bj(A(b̂M ))

≥
∑
M⊆[n]

π(M)
∑
j∈M

bj(A(b̂M ))

≥
∑
M⊆[n]

π(M)
∑
j∈M

bj(A(b̂[n]))

=
∑
j∈[n]

Pr
π

(j ∈M)bj(A(b̂[n]))

≥
(

min
j∈[n]

Pr
π

(j ∈M)

) ∑
j∈[n]

bj(A(b̂[n]))

=

(
1−max

j∈[n]
Pr
π

(j 6∈M)

) ∑
j∈[n]

bj(A(b̂[n])) .

Finally, we observe that this is tight. Consider a valuation and allocation function pair for which, every
agent other than some agent j has a zero value for every outcome, and agent j has a non-zero value only for
those outcomes that were chosen taking j into consideration, i.e., :

bk(A(b̂M )) =


0, k 6= j

0, j /∈M
1, otherwise

When j = argmaxk∈[n] Prπ(k /∈M), the preceding bound is tight.
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Lemma B.2 Let π be a distribution such that maxi,M cπi (M) < maxi,M cπ̄i (M). Then

max
i

Pr
π

(i /∈M) > max
i

Pr
π̄

(i /∈M) .

Proof:
Let c̄ = maxi,M cπ̄i (M). Note that for all M |i 6∈M , cπ̄i (M) = π̄(M∪{i})

π̄(M) = c̄. It follows by algebra that∑
M|i/∈M π̄(M∪{i})∑
M|i/∈M π̄(M) = c̄ and therefore by the conditions of the lemma

max
i,M

cπi (M) <

∑
M |i/∈M π̄(M ∪ {i})∑

M |i/∈M π̄(M)
. (11)

Next we have,

max
i,M

cπi (M) ≥ max
M

cπi (M) ≥ max
M |i/∈M

π(M ∪ {i})
π(M)

≥
∑

M |i/∈M π(M ∪ {i})∑
M |i/∈M π(M)

(12)

Combining (11) and (12) gives∑
M |i/∈M π(M ∪ {i})∑

M |i/∈M π(M)
<

∑
M |i/∈M π̄(M ∪ {i})∑

M |i/∈M π̄(M)
(13)

Note that since π and π̄ are probability distributions, the sum of the numerator and denominator of both the
LHS and the RHS of (13) equals 1. Thus, it immediately follows that the denominator of the LHS is larger
than the denominator of the RHS, i.e., ∑

M |i/∈M

π(M) >
∑

M |i/∈M

π̄(M) (14)

Inequality (14) when restated, reads as

Pr
π

(i /∈M) > Pr
π̄

(i /∈M) .

But since the above inequality is true for all i, and the RHS of the above inequality is the same for all i
(namely the parameter µ by which the reduction is parametrized), the statement of the lemma follows.

Theorem B.3 (Restatement of Theorem 4.5.) The reduction MIDRtoMech(A, γ) minimizes payment vari-
ance and the worst-case payment among all reductions that achieve a welfare approximation of at least
αW = 1− γ.

Proof: By Lemma B.1, the worst case loss in social welfare of a distribution π is given by

1− απ = max
i

Pr
π

(i 6∈M) .

For worst-case payments, the contrapositive of Lemma B.2 precisely says that if 1− απ ≤ 1− απ̄, then the
largest payment maxM,i c

π
i (M) ≥ maxM,i c

π̄
i (M), thus proving that any other reduction will be worse.

For payment variance, arguing along the lines of Theorem 4.1 again says that variance will be minimized
when π is an independent distribution and Pr(i ∈ M) is the same for all i. Since π̄ is precisely the
distribution that does this, it follows that it is optimal.
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B.2 Optimizing Revenue

Lemma B.4 (Restatement of Lemma 4.6) The reduction MIDRtoMech(A, γ) obtains an απ = π([n])
approximation to the revenue, and this is tight.

Proof: For any b with non-negative valuations, the revenue under a single call reduction will be

∑
i∈[n]

E[Pi] =
∑
i∈[n]

∑
M⊆[n]

π(M)

∑
k 6=i

bk(A(b̂M\{i}))−
∑
k 6=i

bk(A(b̂M ))


≥ π([n])

∑
i∈[n]

∑
k 6=i

bk(A(b̂[n]\{i}))−
∑
k 6=i

bk(A(b̂[n]))


where

∑
i∈[n]

(∑
k 6=i bk(A(b̂[n]\{i}))−

∑
k 6=i bk(A(b̂[n]))

)
is the revenue generated byA under VCG prices.

Thus, any distribution π(M) gives an α = π([n]) approximation to the revenue.
To see that this is tight, consider the following allocation function:

bi(A(b̂M )) =


1
n M = [n]

1
n−1 i ∈M but M 6= [n]

0, otherwise.

The revenue under VCG prices is
∑

i∈[n]

(∑
k 6=i bk(A(b̂[n]\{i}))−

∑
k 6=i bk(A(b̂[n]))

)
, which is n(n−1

n−1−
n−1
n ) = 1.

Under any single-call reduction, the revenue will be given by

∑
i∈[n]

E[Pi] =
∑
i∈[n]

∑
M⊆[n]

π(M)

∑
k 6=i

bk(A(b̂M\{i}))−
∑
k 6=i

bk(A(b̂M ))


=

∑
i∈[n]

π([n])

∑
k 6=i

bk(A(b̂[n]\{i}))−
∑
k 6=i

bk(A(b̂[n]))


=

∑
i∈[n]

π([n])

(
1− n− 1

n

)
= π([n]) .

C Characterizing Reductions for Single-Parameter Domains

In this section we characterize truthful single-call reductions for single-parameter domains that use arbitrary
measures µb. We refer the reader to Section E for some background and definitions from measure theory.

Before we begin, we must formalize some properties of the functions A and the measures µb. The fol-
lowing assumptions would typically be implicit in Algorithmic Mechanism Design; however, it is necessary
that they be formalized for some of the tools in our proof. We assume the following:
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1. Any allocation function A that the reduction receives as input (as a black box) is a Borel measurable
function, i.e., each of the Ai’s as a function from Rn → R+ is a bounded Borel measurable function.

2. For every b, the resampling measure µb(·) is a Borel probability measure.

3. The function mapping the bid b to the resampling measure µb(·) is measurable w.r.t to the Borel
σ-algebra on the space of Borel probability measures over Rn.

First, we use the measure µb(·) to define a signed measure νb,i(B) = biµb(B)−
∫ bi

0 µu,b−i(B)du which
has the property: ∫

b̂∈Rn
Ai(b̂)dνb,i = biEb̂∼µb [Ai(b̂)]−

∫ bi

0
Eb̂∼µu,b−i

[Ai(b̂)]du ,

that is, integrating Ai with respect to νb,i is equivalent to computing the Archer-Tardos prices.

Lemma C.1 The function νb,i(B) = biµb(B)−
∫ bi

0 µu,b−i(B)du is a finite signed measure satisfying∫
b̂∈Rn

Ai(b̂)dνb,i = biEb̂∼µb [Ai(b̂)]−
∫ bi

0
Eb̂∼µu,b−i

[Ai(b̂)]du

for any bounded Ai

Proof: First, we show that νb,i(B) is a finite signed measure. Since µb is a probability measure, we have
µb(B) ≤ 1 for all B. Thus, νb,i(B) is well-defined and finite for all Borel sets B (note that the integral is
well defined by our assumptions on the measurability of µb). From this it is easy to see that νb,i(∅) = 0
because µb(∅) = 0. It remains to show countable additivity, i.e.

∑∞
k=1 νb,i(Bk) = νb,i(∪kBk), which

follows because integrals obey countable additivity for nonnegative functions (see Fact E.7):

∞∑
k=1

νb,i(Bk) =
∞∑
k=1

(
biµb(Bk)−

∫ bi

0
µu,b−i(Bk)du

)
=
∞∑
k=1

biµb(Bk)−
∫ bi

0

∞∑
k=1

µu,b−i(Bk)du

= biµb(∪kBk)−
∫ bi

0
µu,b−i(∪kBk)du = νb,i(∪kBk) .

Second, we show from first-principles that integrating Ai with respect to νb,i is equivalent to calculating
the Archer-Tardos prices for Ai. We begin by showing this equality for charateristic functions over Borel
measurable sets. The proof for more general functions (in our case Ai) can be built-up from characteristic
functions precisely as in the definition of an integral, so we omit it (see Definition 21). Let 1B be the char-
acteristic function of a Borel measurable set. By definition of an integral,

∫
1Xdν = ν(X), and plugging in

we observe the desired equality:

biEb̂∼µb [1B(b̂)]−
∫ bi

0
Eb̂∼µu,b−i

[1B(b̂)]du = biµb(B)−
∫ bi

0
µu,b−i(B)du

=

∫
b̂∈Rn

1B(b̂)dνb,i .

The general version of the characterization theorem shows that the payment functions precisely cor-
respond to the density function ρµb,i(b̂) relating νb,i to µb (i.e. the Radon-Nikodym derivative of νb,i with
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respect to µb — its existence is guaranteed by the absolute continuity that figures in the characterization
theorem C.2 below). In this setting, we can equivalently define the associated coefficients cµi (b̂, b) as the
function that satisfies

bic
µ
i (b̂, b) = ρµb,i(b̂) .

Theorem C.2 (Characterizing single-call reductions) (Generalization of Theorem 6.1.)
A single-call single-parameter reduction (µ, {λi}) for the set of all monotone bounded single-parameter

allocation functions satisfies truthfulness, individual rationality, and no positive transfers in expectation if
and only if the following conditions are met:

1. The distribution µ is such that for all monotone, locally bounded A, the randomized allocation pro-
cedure Ai(b) is monotone in expectation, i.e., for all agents i, for all b, and b′i ≥ bi, E[Ai(b)] ≤
E[Ai(b′, b−i)] (see Lemma C.4 for further discussion).

2. For all i, and for all Borel measurable sets B, the measure µb(B) 6= 0 if
∫ bi

0 µu,b−i(B)du 6= 0, or
equivalently, the signed measure νb,i is absolutely continuous w.r.t. measure µb.

3. The payment functions λi(A(b̂), b̂, b) satisfy

λi(A(b̂), b̂, b) = ρµb,i(b̂)Ai(b̂) + λ0
i (b̂, b) a.s.

where Eb̂∼µb [λ
0
i (b̂, b)] = 0 and ρµb,i(b̂) is the density function relating νb,i to µb.

(Almost surely, or a.s., means that it holds everywhere except for a set with measure zero under µb(·).)

Proof:

Necessity We first prove the necessity of the three conditions above. The first condition, that A is mono-
tone in expectation, follows directly from Archer-Tardos characterization of truthful allocation functions.
The second and third conditions, as we prove below, are necessary for the expected payment to take the
form required by the Archer-Tardos characterization.

We now write down the truthful payments give by the Archer-Tardos characterization, and rewrite it
using the signed measure νb,i.

E[Pi] = biE[Ai(b)]−
∫ bi

0
E[Ai(u, b−i)]du

= biEb̂∼µb [Ai(b̂)]−
∫ bi

0
Eb̂∼µu,b−i

[Ai(b̂)]du

=

∫
b̂∈Rn

Ai(b̂)dνb,i .

where the last equality follows from the definition of the signed measure νb,i, and Lemma C.1.
By definition of the reduction, we can write the expected payment as:

E[Pi] =

∫
b̂∈Rn

λi(A(b̂), b̂, b)dµb .

Equating these two gives ∫
b̂∈Rn

λi(A(b̂), b̂, b)dµb = E[Pi] =

∫
b̂∈Rn

Ai(b̂)dνb,i . (15)
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Next, we define the normalized payment function λ̃ as

λ̃i(A(b̂), b̂, b) = λi(A(b̂), b̂, b)− λi(0n, b̂, b) .

By (15),
∫
b̂∈Rn λi(0

n, b̂, b)dµb(B) = 0, and therefore we may write∫
b̂∈Rn

λ̃i(A(b̂), b̂, b)dµb =

∫
b̂∈Rn

Ai(b̂)dνb,i .

If the above equality were to hold for all bounded, monotone, measurable allocation functions A, then
by Lemma C.3, this implies for all Borel measurable sets X ⊆ Rn:∫

b̂∈X
λ̃i(A(b̂), b̂, b)dµb =

∫
b̂∈X

Ai(b̂)dνb,i . (16)

This statement would be intuitive if we allowedAi to be any function — we could pick the functionA′i(b) =
1X(b)Ai(b), i.e. we could zero Ai except on X , and plug back into the previous equality. Unfortunately,
this A′i is not monotone. The work of Lemma C.3 is to show that the space of bounded, monotone functions
is still sufficiently general as to guarantee equality for any Borel measurable set X .

Having derived Equation (16), we now show how it makes conditions two and three in theorem neces-
sary. If we substitute the constant function Ai(b) = 1 into (16), we see that for all measurable X∫

b̂∈X
λ̃i(1

n, b̂, b)dµb =

∫
b̂∈X

dνb,i ,

that is, λ̃i(1n, b̂, b) satisfies the definition of the derivative of νb,i w.r.t µb, and therefore ρµb,i(b̂) = λ̃i(1
n, b̂, b).

Thus, given that finite payments λ exist it follows that the density relating νb,i to µb, namely ρµb,i(b̂), also
exists and is finite. But given that both µb and νb,i are finite measures, this also means that νb,i is absolutely
continuous w.r.t. µb. If not, then there exists a Borel measurable set V such that νb,i(V ) 6= 0 but µb(V ) = 0.
We run into an immediate contradiction as follows:

0 =

∫
b̂∈V

ρµb,i(b̂)dµb =

∫
b̂∈V

dνb,i = νb,i(V ) 6= 0.

Thus we have proved that condition two, absolute continuity of νb,i w.r.t. µb, is necessary.
Returning to (16), by the definition of ρµb,i(b̂) we can write∫

b̂∈X
λ̃i(A(b̂), b̂, b)dµb =

∫
b̂∈X

Ai(b̂)ρ
µ
b,i(b̂)dµb

∫
b̂∈X

(
λ̃i(A(b̂), b̂, b)−Ai(b̂)ρµb,i(b̂)

)
dµb = 0

for all Borel measurable sets X ⊆ Rn. By a standard argument (Fact E.12), this implies

λ̃i(A(b̂), b̂, b)−Ai(b̂)ρµb,i(b̂) = 0

almost surely with respect to µb(B), the third condition. Thus we have shown that all the three conditions
are necessary.
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Sufficiency We now show that the three stated conditions are sufficient. In a single-parameter setting,
for a mechanism to be truthful, we simply need the allocation function to be monotone in expectation, and
the payment function must satisfy the Archer-Tardos payment functions. Condition one guarantees that
the allocation function output by the single-call reduction is a monotone in expectation allocation function.
It remains to show that the second and third conditions result in payments that agree with Archer-Tardos
payments. Given condition two, we see that νb,i is absolutely continuous w.r.t the resampling measure µb,
and thus by Radon Nikodym theorem, the density function ρµb,i(.) is finite and exists. All we need to show

is that under the formula of λi(A(b̂), b̂, b)) described in condition three, we have∫
b̂∈Rn

λi(A(b̂), b̂, b)dµb = biE[Ai(b)]−
∫ bi

0
E[Ai(u, b−i)]du.

Once we substitute the formula for λi(A(b̂), b̂, b) from condition three, this equality follows from the defi-
nition of ρµb,i(·) and νb,i.

Lemma C.3 Let µ and ν be finite measures (possibly signed), and let g : Rn+ ×Rn → R be a function with
g(0, b̂) = 0 satisfying ∫

b̂∈Rn
g(A(b̂), b̂)dµ =

∫
b̂∈Rn

Ai(b̂)dν

for all Borel measurable functions A : Rn → Rn+ where A is bounded and monotone in the sense that
b′ ≥ b⇒ A(b′) ≥ A(b).

Then for any such A and all Borel measurable sets X ⊆ Rn,∫
b̂∈X

g(A(b̂), b̂)dµ =

∫
b̂∈X

Ai(b̂)dν .

Proof: First, assume that the characteristic function of X can be written as the difference of two {0, 1}
monotone functions, that is, 1X(b) = f+(b) − f−(b) where f+ and f− are monotone functions mapping
Rn to {0, 1}. Note that this includes all rectangular parallelepipeds (a product of open, closed, or half-open
intervals).

Define as A+
i (b) = Ai(b) · f+(b) and A−i (b) = Ai(b) · f−(b). Note that for any bounded, monotone,

measurable A, the functions A+ and A− are similarly bounded and monotone. Therefore the conditions of
the lemma imply ∫

b̂∈Rn
g(A+(b̂), b̂)dµ =

∫
b̂∈Rn

A+
i (b̂)dν

and ∫
b̂∈Rn

g(A−(b̂), b̂)dµ =

∫
b̂∈Rn

A−i (b̂)dν

Taking the difference, we get∫
b̂∈Rn

(
g(A+(b̂), b̂)− g(A−(b̂), b̂)

)
dµ =

∫
b̂∈Rn

(
A+
i (b̂)−A−i (b̂)

)
dν .

Note that A+ = A− everywhere except on the set X , so the integrands are only nonzero on X , thus we can
replace Rn with X in the integrals:∫

b̂∈X

(
g(A+(b̂), b̂)− g(A−(b̂), b̂)

)
dµ =

∫
b̂∈X

(
A+
i (b̂)−A−i (b̂)

)
dν .
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Now, note that on X , A+ = A and A− = 0. Thus, also using the fact g(A−(b̂), b̂) = 0, we have∫
b̂∈X

g(A(b̂), b̂)dµ =

∫
b̂∈X

Ai(b̂)dν ,

as desired.
To show that the lemma holds for all Borel measurable setsX , we observe that it holds for all rectangular

parallelepipeds (a product of open, closed, or half-open intervals) by the above argument. Since the set of
rectangular parallelepipeds is closed under finite intersections, the lemma applies to all finite intersections
of rectangular parallelepipeds, which is the π-system that generates the Borel σ-algebra of Rn.

Additionally, if the lemma holds for a countable sequence of disjoint sets Xk, then it clearly holds for
their union as well, implying that the sets for which the lemma is true must be a λ-system.

Therefore, by Dynkin’s π-λ theorem, the λ-system (the sets satisfying the lemma) must contain all sets
in the σ-algebra generated by the π-system (the set of rectangular parallelepipeds) — namely, it must contain
all sets in the Borel σ-algebra of Rn. Thus, the lemma must hold for all Borel measurable sets X .

C.1 Monotonicity and µb

Theorem C.2 requires µb to be such that Ai(b) is monotone in expectation. The following lemma gives a
necessary condition:

Lemma C.4 Let B be a set of bids that is leftward closed with respect to bi, i.e. if b̂ ∈ B, then (u, b̂−i) ∈ B
for all u ∈ (−∞, bi] ∩ Ti. If µb(B) satisfies the monotonicity condition

Pr
(
b̂ ∈ B

∣∣∣ b) = µb(B)

is weakly decreasing in bi. Similarly, ifB is rightward closed with respect to bi (i.e. b̂ ∈ B implies b̂−iu ∈ B
for u ∈ [bi,∞)), then Pr(b̂ ∈ B|b) is weakly increasing in bi, and ifB is both rightward and leftward closed
with respect to bi then Pr(b̂ ∈ B|b) is constant in bi.

Proof: First, we prove the case where B rightward closed. For contradiction, let B be a rightward closed set
on which f violates the statement of the lemma for some b and b′i > bi, i.e.

Pr
(
b̂ ∈ B

∣∣∣ b) = µb(B) > µb′i,b−i(B) = Pr
(
b̂ ∈ B

∣∣∣ b′i, b−i) .

Consider the monotone allocation function

Ai(b) =

{
1, b ∈ B
0, otherwise.

Noting that the E[A(b)] = µb(B), we have

E[Ai(b′i, b−i)] = µb′i,b−i(B) < µb(B) = E[Ai(b)] .

Thus, under this allocation function, bidder i lowers her expected utility by raising her bid to b′i, contradicting
the monotonicity condition.

Finally, any leftward closed set B is the complement (probabilistically) of a rightward closed set, there-
fore Pr(b̂ ∈ B|b) must be weakly decreasing. For a set B that is both leftward and rightward closed, the
theorem follows because Pr(b̂ ∈ B|b) must be both weakly increasing and weakly decreasing.
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D Optimality proofs for generalized BKS

In this section, we generalize our optimality result of Section 6.3 to arbitrary probability measures and give
a complete proof. Theorem C.2 shows that truthful payments take the form

λi(A(b̂), b̂, b) = ρµb (b̂)Ai(b̂) + λ0
i (b̂, b) a.s.

and thus optimizing the bid-normalized payments means optimizing the following quantity:∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))
=
ρµb (b̂)Ai(b̂)

biAi(b̂)
=
ρµb (b̂)

bi
.

This means that for worst-case payments we will optimize supi,b̂

∣∣∣∣ρµb (b̂)

bi

∣∣∣∣, and for payment variance we will

optimize maxi Varb̂∼µb

(
ρµb (b̂)

bi

)
. We show that the BKS transformation is optimal for both, subject to an

almost everywhere caveat:

Theorem D.1 (Optimality of the BKS Transformation) (Generalization of Theorem 6.3) The BKS reduc-
tion SPtoMechBKS(A, γ) optimizes the payment variance and worst-case normalized payment subject to
a lower bound of α = (1−γ)n ∈ (1

e , 1) on the precision, the welfare approximation (n ≥ 2), or the revenue
approximation (n ≥ 2). That is, for any other truthful reduction (µ, {λi}) that achieves a precision, welfare
approximation, or revenue approximation of α, the worst-case normalized payments are at least as large
almost everywhere over b:

sup
A,i

Varb̂∼µb

∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))

 = max
i

Varb̂∼µb

(
ρµb (b̂)

bi

)
≥ max

i
Varb̂∼µb

(
ρBKSb (b̂)

bi

)
a.e.

and

sup
A,i,b̂

∣∣∣∣∣∣
∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))

∣∣∣∣∣∣ = sup
i,b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ sup
i,b̂

∣∣∣∣∣ρBKSb (b̂)

bi

∣∣∣∣∣ a.e.
Under the nice distribution assumption, this holds for every b.

The theorem is proven in two steps. First, we prove in Theorem D.2 that the BKS transform optimizes
precision. Second, we show in Lemma D.3 that a distribution which optimizes precision also optimizes the
welfare and revenue approximations.

Theorem D.2 (Precision Optimality of the BKS Transformation) (Generalization of Theorem 6.3) The
BKS reduction SPtoMechBKS(A, γ) optimizes the variance of normalized payments and the worst-case
normalized payment subject to a lower bound of αP = (1−γ)n ∈ (1

e , 1) on the precision almost everywhere
over b. Under the nice distribution assumption, it is optimal for every b.

Theorem D.2 is given in Sections D.1-D.3. Section D.1 defines probabilities that are used in the proof.
Section D.2 proves Theorem D.2 with forward references to two important technical lemmas given in Sec-
tion D.3.

Lemma D.3 (Generalization of Lemma 6.4) For α > 1
e and n ≥ 2, a probability measure that optimizes the

variance of normalized payments or the maximum normalized payment subject to a precision constraint of
Pr(b̂ = b|b) ≥ α also optimizes the maximum normalized payment almost everywhere subject to a welfare
or revenue approximation of α.

Lemma D.3 is proven in Section D.4, building on technical lemmas form Section D.3.
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D.1 Definitions

To prove Theorem D.2, we give names to certain probabilities. As in the MIDR setting, we use a setM ⊆ [n]
to denote the set of bidders with b̂i = bi. Bidders i 6∈ M have their bids lowered, that is b̂i < bi. We define
the probability πµ(M, b) to be the probability that such an event occurs, that is, πµ(M, b) is the probability
when b is bid that b̂i = bi if i ∈M , and b̂i < bi if i 6∈M :

πµ(M, b) ≡ Pr
(

(b̂i = bi for i ∈M) and (b̂i < bi for i 6∈M)
∣∣∣ b) .

Note that for the BKS transformation, πµ(M, b) = (1− γ)|M |γn−|M | so πµ(M∪{i},b)
πµ(M,b) = 1−γ

γ .
The second probability quantifies the behavior of µb near b as follows. Fix a bid b and assume player

i actually bids bi − δ. Does the distribution µbi−δ,b−i cause the reduction to select b̂ = b with positive
probability in spite of the fact that i said bi − δ? In particular, we care about the average behavior for
δ ∈ [0, bi], which we represent by zµ(M, i, b̄). Formally, we define

ζµ(M, i, b, z) ≡ Pr
(
b̂i = z and (b̂j = bj for j ∈M \ {i}) and (b̂j < bj for j 6∈M ∪ {i})

∣∣∣ b)
and

zµ(M, i, b) ≡ 1

bi

∫ bi

0
ζµ(M, i, (u, b−i), bi) .

Of particular importance, we will show zµ(M, i, b) = 0 almost everywhere in general and everywhere under
the nice distribution assumption.

D.2 Precision Optimality of the BKS Transformation

The optimality proof for the BKS transformation
The first result follows as a corollary of Lemma D.8:

Corollary D.4 (of Lemma D.8) If a resampling distribution µ satisfies the monotonicity condition, then for
all M , i 6∈M :

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ πµ(M ∪ {i}, b)− zµ(M, i, b)

πµ(M, b)

and ∫
b̂i≤bi∧(j∈M⇒b̂j=bj)∧(j 6∈M∪{i}⇒b̂j<bj)

(
ρµb (b̂)

bi

)2

dµb

≥ (πµ(M, b) + πµ(M ∪ {i}, b)) π
µ(M ∪ {i}, b)
πµ(M, b)

(
1− zµ(M, i, b)

πµ(M ∪ {i}, b)

)2

.

Proof: Apply Lemma D.8 where B−i is the set of b̂−i where b̂j = bj if j ∈M and b̂j < bj for j 6∈M .

If we ignore the zµ(M, i, b) terms, this looks precisely like the normalized payments from the MIDR
setting. Fortunately, zµ(M, i, b) is almost always zero:

Corollary D.5 (of Lemma D.11) For any resampling distribution µ and a fixed M and i,

zµ(M, i, b) = 0 a.e.

(i.e. for all but a set of b with zero measure).
Under the nice distribution assumption, zµ(M, i, b) = 0 for all b.
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Proof: Note that ζµ(M, i, (u, b−i), bi) ≤ Prµ(b̂i = bi|u, b−i), so by Lemma D.11

zµ(M, i, b) =
1

bi

∫ bi

0
ζµ(M, i, (u, b−i), bi) ≤

∫ bi

0
Pr
µ

(b̂i = bi|u, b−i) = 0 a.e.

Thus, Corollaries D.4 and D.5 together imply the following bound:

Lemma D.6 If a resampling disrtibution µ with precision α ≥ (1−γ)n satisfies the monotonicity condition,
then

sup
i,b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ
γ

a.e.

that is, for all b but a set with measure zero. This holds everywhere if zµ(M, i, b) = 0 everywhere.

Proof: We first prove the bound on the worst-case normalized payment. By assumption on the precision of
µ, we have πµ([n], b) ≥ (1− γ)n for some γ and all b. By Corollary D.4, we know that

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ πµ(M ∪ {i}, b)− zµ(M, i, b)

πµ(M, b)
.

Applying Lemma D.9 with η(S) = πµ(S, b), α = (1− γ)n, and β = 1 we get that

max
M,i6∈M

πµ(M ∪ {i}, b)
πµ(M, b)

≥ 1− φ
φ

where

φ = 1−
(

(1− γ)n

1

) 1
n

= γ .

Thus,

max
M,i6∈M

πµ(M ∪ {i}, b)
πµ(M, b)

≥ 1− γ
γ

.

Aggregating Corollary D.4 over all M and i 6∈M , we have

sup
i,b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ max
M,i6∈M

πµ(M ∪ {i}, b)
πµ(M, b)

− max
M,i6∈M

zµ(M, i, b)

πµ(M, b)

≥ 1− γ
γ
− max
M,i6∈M

zµ(M, i, b)

πµ(M, b)
.

If we assume zµ(M, i, b) = 0 everywhere (e.g. by the nice distribution assumption), then we get

sup
i,b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ
γ

.

Otherwise, Corollary D.5 says that zµ(M, i, b) = 0 almost everywhere, giving the more general bound.
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Lemma D.7 If a resampling distribution µ with precision α ≥ (1 − γ)n ≥ 1
e satisfies the monotonicity

condition, then

max
i

Varb̂

(
ρµb (b̂)

bi

)
≥ 1− γ

γ
a.e.

that is, for all b but a set with measure zero. This holds everywhere if zµ(M, i, b) = 0 everywhere.

Proof: The proof for variance is similar to Lemma D.6, but we apply Lemma D.10 instead of Lemma D.9.
First, note that since µb is a probability measure, µb(Rn) = 1 and thus∫

b̂∈Rn

ρµb (b̂)

bi
dµb =

1

bi
νb,i(Rn) = µb(Rn)− 1

bi

∫ bi

0
µu,b−i(R

n)du = 1− 1

bi

∫ bi

0
1du = 0 .

We begin with the variance for player i, applying Corollaries D.4 and D.5:

Varb̂

(
ρµb (b̂)

bi

)
=

∫
b̂∈Rn

(
ρµb (b̂)

bi

)2

dµb −

(∫
b̂∈Rn

ρµb (b̂)

bi
dµb

)2

=

∫
b̂∈Rn

(
ρµb (b̂)

bi

)2

dµb

≥
∑

M |i 6∈M

∫
b̂i≤bi∧(j∈M⇒b̂j=bj)∧(j 6∈M∪{i}⇒b̂j<bj)

(
ρµb (b̂)

bi

)2

dµb

≥
∑

M |i 6∈M

(πµ(M, b) + πµ(M ∪ {i}, b)) π
µ(M ∪ {i}, b)
πµ(M, b)

a.e.

Applying Lemma D.10 with η(S) = πµ(S, b), α = (1− γ)n and β = Pr
(
b̂ ≤ b

∣∣∣ b) immediately implies

max
i

Varb̂

(
ρµb (b̂)

bi

)
≥ Pr

(
b̂ ≤ b

∣∣∣ b) 1− φ
φ

a.e.

where

φ = 1−

 (1− γ)n

Pr
(
b̂ ≤ b

∣∣∣ b)
 1

n

.

One can check that when (1−γ)n

Pr( b̂≤b|b) ≥
1
e , the quantity Pr

(
b̂ ≤ b

∣∣∣ b) 1−φ
φ is decreasing in Pr

(
b̂ ≤ b

∣∣∣ b).

Taking the worst case Pr
(
b̂ ≤ b

∣∣∣ b) = 1 implies the desired result:

max
i

Varb̂

(
ρµb (b̂)

bi

)
≥ max

i
≥ 1− γ

γ
a.e.

Theorem D.2 – optimality of the BKS transformation with respect to a precision bound – follows from
the two previous lemmas:

33



Proof:[ of Theorem D.2] For worst-case payments, we show that for any measure µ, with precision at least
2−n,

sup
i,b̂

∣∣∣∣∣ρBKSb (b̂)

bi

∣∣∣∣∣ ≤ sup
i,b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ a.e.
For Pr(b̂ = b|b) = (1 − γ)n, the BKS transform achieves supi,b̂

∣∣∣∣ρBKSb (b̂)
bi

∣∣∣∣ = max
(

1, 1−γ
γ

)
for all b.

Provided γ > 1
2 , the dominant term is 1−γ

γ and Lemma D.6 shows that this is a lower bound for any such µ
almost everywhere. When α > 2−n we get γ > 1

2 , and thus BKS is optimal.
Moreover, under the nice distribution assumption (implying zµ(M, i, b) = 0), Lemma D.6 says that this

holds everywhere.
For the variance of normalized payments, we need to show that for any measure µ with precision at least

1
e :

Varb̂∼µb

(
ρBKSb (b̂)

bi

)
≤ Varb̂∼µb

(
ρµb (b̂)

bi

)
a.e.

Again, for Pr(b̂ = b|b) = (1 − γ)n, the BKS transform achieves Varb̂∼µb

∣∣∣∣ρBKSb (b̂)
bi

∣∣∣∣ = 1−γ
γ for all b.

Lemma D.7 shows that this is a lower bound for any such µ almost everywhere.

D.3 Technical Lemmas

The next lemma gives our main lower bound on the worst coefficient:

Lemma D.8 If a measure µ satisfies the monotonicity condition, then for any player i, bid b, and set of bids
B−i ⊆ Rn−1

+ :

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ Pr
(
b̂i = bi ∧ b̂−i ∈ B−i

∣∣∣ b)− 1
bi

∫ bi
0 Pr

(
b̂i = bi ∧ b̂−i ∈ B−i

∣∣∣u, b−i)
Pr
(
b̂i < bi ∧ b̂−i ∈ B−i

∣∣∣ b) ,

and

∫
b̂i≤bi∧b̂−i∈B−i

(
ρµb (b̂)

bi

)2

dµb ≥Pr
(
b̂i ≤ bi ∧ b̂−i ∈ B−i

∣∣∣ b) Pr
(
b̂i = bi ∧ b̂−i ∈ B−i

∣∣∣ b)
Pr
(
b̂i < bi ∧ b̂−i ∈ B−i

∣∣∣ b)
×

1−
1
bi

∫ bi
0 Pr

(
b̂i = bi ∧ b̂−i ∈ B−i

∣∣∣u, b−i)
Pr
(
b̂i = bi ∧ b̂−i ∈ B−i

∣∣∣ b)
2

,

where the integral terms are zero almost everywhere in b by Lemma D.11.

Proof: Define the sets
B(=) = {bi} ×B−i and B(<) = [0, bi)×B−i ,
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i.e. the set B(=) contains bids b̂ where b̂i = bi and b̂−i ∈ B−i, and the set B(<) contains bids b̂ where
b̂i < bi and b̂−i ∈ B−i. The main work of the lemma is to bound the following term:∫

b̂∈B(<)

ρµb (b̂)

bi
dµb =

νb,i(B
(<))

bi

=
biµb(B

(<))−
∫ bi

0 µu,b−i(B
(<))du

bi

= µb(B
(<))− 1

bi

∫ bi

0
µu,b−i(B

(<))du

= Pr
(
b̂ ∈ B(<)

∣∣∣ b)− 1

bi

∫ bi

0
Pr
(
b̂ ∈ B(<)

∣∣∣u, b−i) du .

By monotonicity, Pr
(
b̂ ∈ B(<) ∪B(=)

∣∣∣u, b−i) is weakly decreasing in u (Lemma C.4). This implies

Pr
(
b̂ ∈ B(=)

∣∣∣ b)+ Pr
(
b̂ ∈ B(<)

∣∣∣ b) ≤ 1

bi

∫ bi

0

(
Pr
(
b̂ ∈ B(=)

∣∣∣u, b−i)+ Pr
(
b̂ ∈ B(<)

∣∣∣u, b−i)) du
and thus ∫

b̂∈B(<)

ρµb (b̂)

bi
dµb = Pr

(
b̂ ∈ B(<)

∣∣∣ b)− 1

bi

∫ bi

0
Pr
(
b̂ ∈ B(<)

∣∣∣u, b−i) du
≤ −

(
Pr
(
b̂ ∈ B(=)

∣∣∣ b)− 1

bi

∫ bi

0
Pr
(
b̂ ∈ B(=)

∣∣∣u, b−i) du) .

To bound supb̂∈B(<)

∣∣∣∣ρµb (b̂)

bi

∣∣∣∣, we have

sup
b̂∈B(<)

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥
∣∣∣∣∣∣
∫
b̂∈B(<)

ρµb (b̂)

bi
dµb

µb(B(<))

∣∣∣∣∣∣ ≥
Pr
(
b̂ ∈ B(=)

∣∣∣ b)− 1
bi

∫ bi
0 Pr

(
b̂ ∈ B(=)

∣∣∣u, b−i)
Pr
(
b̂ ∈ B(<)

∣∣∣ b)
Lemma D.11 implies that the limit term is zero almost everywhere in b.
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For our partial bound on the second moment, we write

∫
b̂∈B(<)∪B(=)

(
ρµb (b̂)

bi

)2

dµb ≥
∫
b̂∈B(=)

(
ρµb (b̂)

bi

)2

dµb +

∫
b̂∈B(<)

(
ρµb (b̂)

bi

)2

dµb

≥µb(B(=))

∫b̂∈B(=)

ρµb (b̂)

bi
dµb

µb(B(=))

2

+ µb(B
(<))

∫b̂∈B(<)

ρµb (b̂)

bi
dµb

µb(B(<))

2

≥µb(B(=))

Pr
(
b̂ ∈ B(=)

∣∣∣ b)− 1
bi

∫ bi
0 Pr

(
b̂ ∈ B(=)

∣∣∣u, b−i) du
µb(B(=))

2

+ µb(B
(<))

Pr
(
b̂ ∈ B(=)

∣∣∣ b)− 1
bi

∫ bi
0 Pr

(
b̂ ∈ B(=)

∣∣∣u, b−i) du
µb(B(<))

2

≥
(
µb(B

(<)) + µb(B
(=))

) µb(B(=))

µb(B(<))

×

1−
1
bi

∫ bi
0 Pr

(
b̂ ∈ B(=)

∣∣∣u, b−i) du
Pr
(
b̂ ∈ B(=)

∣∣∣ b)
2

Which is the desired bound.

Lemma D.9 Let η : {0, 1}n be a function over subsets S ⊆ [n] with η([n]) ≥ α ∈ [0, 1] and
∑

S⊆[n] η(S) ≤
β ∈ [0, 1]. Then

max
S,i∈[n]\S

η(S ∪ {i})
η(S)

≥ 1− φ
φ

where φ = 1−
(
α
β

) 1
n .

Proof: By contradiction. Assume that for every S and i 6∈ S,

η(S ∪ {i})
η(S)

<
1− φ
φ

where φ = 1−
(
α
β

) 1
n .

Then by multiplying η(S)
η(S∪{i}) terms together we get

η(S) ≥ η([n])

(
φ

1− φ

)n−|S|
.
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Summing over all S ⊆ [n], substituting for α and β, and algebra gives

∑
S⊆[n]

η(S) > η([n])
∑
S⊆[n]

(
φ

1− φ

)n−|S|

β > α
∑
S⊆[n]

(
φ

1− φ

)n−|S|
β(1− φ)n > α

∑
S⊆[n]

(1− φ)|S|φn−|S|

β (1− φ)n > α

β

(
1−

(
1−

(
α

β

) 1
n

))n
> α

α > α .

Which is a contradiction.

Lemma D.10 Let η : {0, 1}n be a function over subsets S ⊆ [n] with η([n]) ≥ α ∈ [0, 1] and
∑

S⊆[n] η(S) =
β ∈ [0, 1]. Then

max
i

∑
S|i 6∈S

(η(S) + η(S ∪ {i})) η(S ∪ {i})
η(S)

≥ β 1− φ
φ

where φ = 1−
(
α
β

) 1
n .

Proof: We lower-bound the sum. Fix i and differentiate the sum:

∂

∂η(S)

∑
T |i 6∈T

(η(T ) + η(T ∪ {i})) η(T ∪ {i})
η(T )

 =

2 η(S)
η(S\{i}) + 1, i ∈ S

−
(
η(S∪{i})
η(S)

)2
, i 6∈ S .

The conditions of the lemma bound
∑

S η(S) and η([n]), otherwise the values of η are only constrained to
be in [0, 1]. The derivative tells us that in an optimal assignment, for all sets S that do not contain i, the ratio
η(S∪{i})
η(S) is constant. Construct such an optimal assignment and define φi as satisfying

η(S ∪ {i})
η(S)

=
1− φi
φi

for all S that do not contain i. Note that this implies∑
S|i 6∈S

(η(S) + η(S ∪ {i})) η(S ∪ {i})
η(S)

≥ β 1− φi
φi
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For any set S it follows that

η(S) = η([n])
∏
i 6∈S

φi
1− φi∑

S⊆[n]

η(S) = η([n])
∑
S⊆[n]

∏
i 6∈S

φi
1− φi

β
∏
i∈[n]

(1− φi) ≥ α
∑
S⊆[n]

∏
i∈S

(1− φi)
∏
i 6∈S

φi

∏
i∈[n]

(1− φi) ≥
α

β
.

This implies there is some i such that φi ≤ 1−
(
α
β

) 1
n , which implies the lemma.

The next lemma is our main analysis lemma. We will ultimately use it to claim that our lower bound
must hold almost everywhere for any µ:

Lemma D.11 For any resampling distribution µ that satisfies the monotonicity condition, any bid b, and
any bidder i, ∫ bi

0
Pr
µ

(b̂i = bi|u, b−i) = 0 a.e.

(i.e. for all but a set of b with zero measure).

Proof: Define the marginalized measure µib for a set of bids B ⊆ R as

µib(B) ≡ µb({b ∈ Rn|bi ∈ B}) .

Note that
µiu,b−i({bi}) = Pr

µ
(b̂i = bi|u, b−i)

and therefore our task is to show that

lim
u→−bi

µiu,b−i({bi}) = 0 a.e.

Next we show that for any b we can prove the desired limit is zero by proving that a related integral is
zero. Assume that for some b we have

lim
u→−bi

µiu,b−i({bi}) > 0 .

Then there exists a δb such that

∀u ∈ (bi − δb, bi) : µiu,b−i({bi}) > 0 .

Since µiu,b−i({bi}) is nonnegative, this implies∫
u∈R

µiu,b−i({bi})du ≥
∫
u∈(bi−δb,bi)

µiu,b−i({bi})du > 0 .
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Taking the contrapositive, it follows that if the integral is zero at a bid b then the limit is also zero:∫
u∈R

µiu,b−i({bi})du = 0⇒ lim
u→−bi

µiu,b−i({bi}) = 0 . (17)

Henceforth, we will prove that
∫
u∈R µ

i
u,b−i

({bi})du = 0 almost everywhere.
We start with the integral ∫

b∈R

∫
u∈R

µiu,b−i({bi})dudb .

Manipulating the integral and noting that
∫
u∈R 1{u}(b̂i)du = 0, we get∫

b∈R

∫
u∈R

µiu,b−i({bi})dudb =

∫
b∈R

∫
u∈R

µibi,b−i({u})dudb

=

∫
b∈Rn

∫
u∈R

∫
b̂i∈R

1{u}(b̂i)dµ
i
bdudb

=

∫
b∈Rn

∫
b̂i∈R

∫
u∈R

1{u}(b̂i)dudµ
i
bdb

=

∫
b∈Rn

∫
b̂i∈R

0dµibdb

= 0

(where integral rearrangements may be justified by Tonelli’s Theorem). By Fact E.11, this implies∫
u∈R

µiu,b−i({bi})du = 0 almost everywhere over b,

which implies the desired result.

D.4 Welfare and Revenue Optimality

Under mild assumptions, one can show that optimizing precision is equivalent to optimizing the social
welfare approximation or the revenue approximation. We include only the worst-case optimality proofs; the
variance proof is similar, applying ideas from Lemma D.7.

The optimality proof is divided into two steps:

1. Lemmas D.12 and D.13: Show that the welfare/revenue approximation of a resampling distribution µ
is essentially

inf
b

min
i∈[n]

Pr
(
b̂i ≥ bi and b̂−i = b−i

∣∣∣ b) .

The welfare and revenue lemmas use different techniques to give a lower bound on the approximation;
however, they use the same “bad” allocation function.

2. Lemma D.14 and finally Lemma D.3: Show that a distribution that optimizes the worst-case normal-
ized payment with respect to

min
i∈[n]

Pr
(
b̂i ≥ bi and b̂−i = b−i

∣∣∣ b) ≥ α
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must take Pr(b̂ 6≤ b|b) = 0 and, therefore

min
i∈[n]

Pr
(
b̂i ≥ bi and b̂−i = b−i

∣∣∣ b) = Pr
(
b̂ = b

∣∣∣ b)
implying that it is sufficient to optimize with respect to Pr(b̂ = b|b) ≥ (1− γ)n = α.

The following lemmas characterize the welfare and revenue approximations of the reduction generated
by a resampling distribution µ:

Lemma D.12 The welfare approximation of a resampling distribution µ for a bid b is

α = min
i∈[n]

Pr
(
b̂i ≥ bi and b̂−i = b−i

∣∣∣ b) .

Proof: For a bid b, define the set Bi ⊂ Rn+ as

Bi = {b̂|b̂i ≥ bi and b̂−i = b−i} .

Monotonicity of A requires that for all u ≥ bi,

Ai(u, b−i) ≥ Ai(b) .

Thus, the allocation received by player i under A is at least

Pr
(
b̂i ≥ bi and b̂−i = b−i

∣∣∣ b)Ai(b) = Pr
(
b̂ ∈ Bi

∣∣∣ b)Ai(b)
and thus the social welfare is at least∑

i∈[n]

biAi(b) ≥
∑
i∈[n]

bi Pr
(
b̂ ∈ Bi

∣∣∣ b)Ai(b)
≥ min

i∈[n]

(
Pr
(
b̂ ∈ Bi

∣∣∣ b))∑
i∈[n]

biAi(b) .

This lower bound is tightin the following allocation rule

Ai(b̂) =

{
1 i = j and b̂ ∈ Bi

0 otherwise

when j = argmini∈[n] bi Pr(b̂ ∈ Bi|b).

Lemma D.13 The revenue approximationαR of a reduction given by a resampling distribution µ is bounded
from below by the precision

αP = inf
b

Pr
(
b̂ = b

∣∣∣ b) ≤ αR
and above by

αR ≤ inf
b

min
i∈[n]

Pr
(
b̂i ≥ bi ∧ b̂−i = b−i

∣∣∣ b) .
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Proof: To see that the precision αP = infb Pr
(
b̂ = b

∣∣∣ b) is a lower bound on the revenue approximation,
consider decomposing the mechanism produced by the reduction as follows: with probability αP , the mech-
anism uses the original allocation function, and with probability 1−αP it chooses an allocation functionArs

that resamples bids more frequently. Since prices are linear, the final expected price will be the weighted
sum of the truthful prices for A and the truthful prices for Ars.

For positive types, revenue from both A and Ars will be nonnegative, and the revenue of the resulting
mechanism will be the weighted sum of the revenues from A and Ars. Thus, since A is chosen with
probability αP , the revenue of their combination will be at least αP times the revenue from A.

Next we use the allocation function from Lemma D.12 to give an upper bound. For clarity, we assume
that the infimum in the bound of α is attained by some b. (The proof when the infimum is not attained is
messier but fundamentally the same.) Let b be a bid such that

min
i∈[n]

Pr
(
b̂i ≥ bi ∧ b̂−i = b−i

∣∣∣ b) = α .

Again, let Bi ⊂ Rn+ be the set
Bi = {b̂|b̂i ≥ bi and b̂−i = b−i} ,

and consider following allocation function, where j = argmini∈[n] bi Pr(b̂ ∈ Bi|b):

Ai(b̂) =

{
1 i = j and b̂ ∈ Bi

0 otherwise.

When this allocation function is implemented directly with the Archer-Tardos pricing rule, the revenue when
bidders say b will be ∑

i∈[n]

biAi(b)−
∫ bi

−∞
Ai(u, b−i)du = bj .

Now, for any single call reduction, the expected revenue will be∑
i∈[n]

biE[Asci (b)]−
∫ bi

−∞
E[Asci (u, b−i)]du ≤ bjE[Ascj (b)]

= bj Pr
(
b̂ ∈ Bj

∣∣∣ b) .

Thus, the revenue approximation when players bid b is at most Pr(b̂ ∈ Bj |b).

Lemma D.14 The worst-case bid-normalized payment for a resampling distribution µ is at least

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ max

(
1− γ(=)

γ(=)
,
1− γ(>)

γ(>)

)
a.e.

where

γ(=) = 1−

(
Pr(b̂ = b|b)
Pr(b̂ ≤ b|b)

) 1
n

and

γ(>) = 1−

(
mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b)

1
nPr(b̂ 6≤ b|b)

) 1
n−1

.

The bound holds everywhere under the nice distribution assumption.
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Proof: For the sake of clarity, we assume the nice distribution assumption. The general case follows naturally
by carrying extra terms through the analysis.

Corollary D.4 says that for any M ⊂ [n] and i 6∈M ,

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ πµ(M ∪ {i}, b)
πµ(M, b)

.

Since
∑

M⊆[n] π(M, b̄) = Pr
(
b̂ ≤ b̄

∣∣∣ b̄), applying Lemma D.9 with η(S) = πµ(M, b) implies that

max
M⊆[n]

πµ(M ∪ {i}, b)
πµ(M, b)

≥ 1− γ(=)

γ(=)

where γ(=) is

γ(=) = 1−

(
Pr(b̂ = b|b)
Pr(b̂ ≤ b̄|b̄)

) 1
n

.

Thus,

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ(=)

γ(=)
.

Next, define νµ(M, j, b) as the probability that b̂j > bj while bids i 6= j obey M (that is, b̂i = bi for
i ∈M and b̂i < bi if i 6∈M ). Lemma D.8 implies that for all j, M ⊆ [n] \ {j} and i 6∈M ∪ {j},

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ νµ(M ∪ {i}, j, b)
νµ(M, j, b)

a.e.

For any particular j, applying Lemma D.9 with η(S) = νµ(S, j, b) as above implies that

max
M⊂[n]\{j}

νµ(M ∪ {i}, j, b)
νµ(M, j, b)

≥ 1− γ(j)

γ(j)

where γ(j) is

γ(j) = 1−

(
Pr(b̂j > bj ∧ b̂−j = b−j |b)
Pr(b̂j > bj ∧ b̂−j ≤ b−j |b)

) 1
n−1

.

Since the probabilities Pr(b̂j > bj ∧ b̂−j ≤ b−j |b) are disjoint, there must be some j such that

(
1− γ(j)

)n−1
≥

mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b)
1
n Pr(b̂ 6≤ b|b)

.

Pr(b̂j > bj ∧ b̂−j = b−j |b)
Pr(b̂j > bj ∧ b̂−j ≤ b−j |b)

≥
mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b)

1
n Pr(b̂ 6≤ b|b)

.

Thus, it must be that

max
j,M⊂[n]\{j},i 6∈M∪{j}

νµ(M ∪ {i}, j, b)
νµ(M, j, b)

≥ 1− γ(>)

γ(>)
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where γ(>) satisfies

γ(>) = 1−

(
mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b)

1
n Pr(b̂ 6≤ b|b)

) 1
n−1

.

Consequently,

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ(>)

γ(>)

as desired.

We now have the tools to prove that a resampling distribution that optimizes payments subject to a
precision bound also optimizes them subject to a welfare approximation or revenue approximation bound:
Proof:[of Lemma D.3] For clarity, we argue under the nice distribution assumption. Subject to mini∈[n] Prµ(b̂i >

bi ∧ b̂−i = b−i|b) ≥ α > 2−n, the BKS transformation achieves

sup
b̂

∣∣∣∣∣ρBKSb (b̂)

bi

∣∣∣∣∣ =
α

1
n

1− α
1
n

,

so any optimal distribution must do at least as well.
Let µ be some resampling distribution. If Prµ(b̂ 6≤ b|b) 6= 0, either

Prµ(b̂ = b|b)
Prµ(b̂ ≤ b̄|b̄)

> α ,

or
mini∈[n] Prµ(b̂i > bi ∧ b̂−i = b−i|b)

Prµ(b̂ 6≤ b|b)
≥ α .

In the first case, applying Lemma D.14 gives

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ(=)

γ(=)
>

α
1
n

1− α
1
n

= sup
b̂

∣∣∣∣∣ρBKSb (b̂)

bi

∣∣∣∣∣
and therefore µ cannot be optimal.

In the second case, Lemma D.14 and the assumption that α > 2−n ≥ 1
nn gives

γ(>) ≤ 1− (nα)
1

n−1

< 1− (α−
1
nα)

1
n−1

= 1− α
1
n .

Thus, γ(>) < 1− α
1
n , so

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ(>)

γ(>)
>

α
1
n

1− α
1
n

= sup
b̂

∣∣∣∣∣ρBKSb (b̂)

bi

∣∣∣∣∣
so again µ cannot be optimal.
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It follows that any optimal distribution µ must have Pr(b̂ 6≤ b|b) = 0 and, therefore

min
i∈[n]

Pr
(
b̂i > bi ∧ b̂−i = b−i

∣∣∣ b) = Pr
(
b̂ = b

∣∣∣ b) .

Thus, a distribution which wishes to optimize the worst-case normalized payment subject to Pr(b̂ = b|b) ≥
α will also optimize payments subject to mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b) ≥ α, and will have Pr(b̂ =

b|b) = mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b).

E Analysis Definitions, Facts, and Lemmas

This section provides a limited background on analysis concepts.

E.1 Measures and Integrals

We begin with various possible set of axioms a collection of sets may satisfy, and their technical names.

Definition 9 (σ-algebra) The σ-algebra over a set U is a non-empty collection Σ of subsets of U that is
closed under complementation and countable union of its members. The pair (U,Σ) is called a measurable
space.

Definition 10 (Generated σ-algebra) Given a set U and a collection of subsets F of U , there is a unique
smallest σ-algebra over U containing all the elements of F . This σ-algebra is denoted by σ(F ) and is called
as the σ-algebra generated by F .

Definition 11 (Borel σ-algebra) The Borel σ-algebra B(U) of a metric space U is the σ-algebra generated
by the collection of all open sets of U .

Definition 12 (Measurable sets) Once we fix a measurable space (U,Σ), the sets X ∈ Σ are called mea-
surable sets.

Definition 13 (Measurable functions) Given two measurable spaces (U,Σ) and (U ′,Σ′), a function f :
U → U ′ is measurable if for each X ′ ∈ Σ′, f−1(X ′) ∈ Σ.

We are now ready for the definition of a measure.

Definition 14 (Measure) Given a measurable space (U,Σ), we equip it with a measure ν, which is function
ν : Σ→ [0,∞] that satisfies

1. ν(∅) = 0

2. Countable additivity, i.e. for all countable sequences {Xi}i∈Z of pairwise-disjoint sets in Σ, ν(∪i∈ZXi) =∑
i∈Z ν(Xi).

A measure ν is said to be finite if ν(U) is finite.

Definition 15 (Probability measure) A measure is a probability measure if ν(U) = 1.

Definition 16 (Signed measure) A signed measure is a function ν : Σ→ [−∞,∞] that satisfies ν(∅) = 0
and countable additivity.

Fact E.1 If ν1 and ν2 are finite (signed) measures, then ν3(X) = ν1(X)−ν2(X) is a finite signed measure.
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Convention According to standard convention, a measure is not signed unless explicitly stated. For the
purposes of this paper, the set U will always be Rn.

Apart from the set collections defined via σ-algebras, we also need some weaker set collections, which
we define below.

Definition 17 (π-system) The π-system over a set U is a non-empty collection P of subsets of U that is
closed under finite intersection of its members, i.e., X1 ∩X2 ∈ P whenever X1 and X2 ∈ P .

Definition 18 (λ-system, or Dynkin system) The λ-system over a set U is a non-empty collection L of
subsets of U that is closed under complementation and countable disjoint union of its members.

Fact E.2 (Dynkin’s theorem) If P is a π-system and L is a λ-system over the same set U , and P ⊆ L, then
σ(P ) ⊆ L, i.e., the σ-algebra generated by P is contained in L.

The Hahn and Jordan decompositions decompose a signed measure into two measures. They will be
useful when we discuss the integral with respect to a signed measure.

Fact E.3 (Hahn decomposition theorem) The Hahn decomposition of a signed measure ν over a measur-
able space (U,Σ) consists of two sets P,N ∈ Σ such that P ∪N = U , P ∩N = ∅, and for all measurable
sets X ⊆ P , ν(X) ≥ 0 and for all measurable sets X ⊆ N , ν(X) ≤ 0. The Hahn decomposition is
guaranteed to exist and be unique (up to a set of measure 0)

Fact E.4 (Jordan decomposition theorem) This theorem is a consequence of Hahn decomposition theo-
rem, and states that every signed measure ν can be decomposed as two (non-negative) measures ν+(X) =
ν(X ∩ P ) and ν−(X) = −ν(X ∩ N), where P and N are the Hahn decomposition of ν. The measures
satisfy ν(X) = ν+(X) − ν−(X). The Jordan decomposition is guaranteed to exist and to be unique, and
at least one of ν+ and ν− is guaranteed to be a finite measure. If ν is finite, then both ν+ and ν− are finite.

Definition 19 (Characteristic Function) The characteristic function 1S(x) of a set S is the function that is
1 if x ∈ S and zero elsewhere, i.e.

1S(x) =

{
1, x ∈ S
0, otherwise.

Definition 20 (Simple Function) Given a measurable space (U,Σ), a function s : U → R is a simple
function if it can be written as a finite linear combination of indicator function of measurable sets. That is,

s(x) =
n∑
k=1

ak1Sk(x)

for finite sequences of measurable sets {Sk} ∈ Σ and coefficients {ak} ∈ R.

Fact E.5 For any non-negative, measurable function f , there is a monotonic increasing sequence of non-
negative simple functions {sk} such that

f = lim
k→∞

sk .
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Definition 21 (Integral) Given a measurable space (U,Σ), the integral of a function f : U → R with
respect to a measure ν is defined incrementally. For any measurable set X , the integral of 1X is∫

U
1Xdν = ν(X) .

For any simple function s : U → R, ∫
U
sdν =

n∑
k=1

akν(Xk) .

For a general non-negative function f : U → R,∫
U
fdν = sup

{∫
U
sdν : 0 ≤ s ≤ f and s is simple

}
.

For general f , let f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0), i.e. f+ and f− are the positve
and negative parts of f respectively. Then∫

U
fdν =

∫
U
f+dν −

∫
U
f−dν .

Finally, for some measurable set Y , ∫
Y
fdν =

∫
U
fdνY

where νY (X) = ν(U ∩ Y ).

Fact E.6 (Monotone Convergence Theorem) For any countable, monotone sequence of measurable func-
tions {fk} (that is, sequence where fk ≥ fk−1 pointwise),

lim
k→∞

∫
fkdν =

∫
lim
k→∞

fkdν .

The following fact follows because gk =
∑k

i=1 fi satisfies the monotone convergence theorem:

Fact E.7 For any countable sequence of nonnegative measurable functions {fk}

∞∑
k=1

∫
fkdν =

∫ ∞∑
k=1

fkdν .

Fact E.8 Let {Xk} be a countable sequence of disjoint sets. Then∑
k

∫
Xk

fdν =

∫
∪kXk

fdν .

Definition 22 (Integral with respect to a Signed Measure) The integral of a function f with respect to a
signed measure ν is ∫

U
fdν =

∫
U
fdν+ −

∫
U
fdν− ,

where ν+ and ν− are the Jordan decomposition of ν.
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E.1.1 Densities and Derivatives

Definition 23 (Absolute continuity) Given a signed measure ν and a measure µ on the same measurable
space, ν is absolutely continuous w.r.t. µ, if for every measurable set V where µ(V ) = 0, we have ν(V ) = 0.

We now state below the Radon-Nikodym theorem the way we use it, though the theorem itself is more
general.

Fact E.9 (Radon-Nikodym Theorem) The RadonNikodym theorem states that given a finite signed mea-
sure ν and a finite measure µ on the same measurable space such that ν is absolutely continuous w.r.t. µ, the
measure ν has a density, or “Radon-Nikodym derivative”, with respect to µ, i.e., there exists a µ-measurable
function ρ taking values in [0,∞], such that for any µ-measurable set X we have

ν(X) =

∫
X
ρdµ .

Fact E.10 If ρ is a Radon-Nikodym derivative of measure ν w.r.t. measure µ, then∫
X
f(x)dν =

∫
X
ρ(x)f(x)dµ

wherever
∫
X f(x)dν is well defined.

E.2 Almost Everywhere

Definition 24 (Almost Everywhere) A property P (s) is said to hold almost everywhere on a set S if the
subset of S on which P (s) is false has measure zero (or is contained in a set that has measure 0). It is
abbreviated a.e..The exact measure used will become clear from the context.

Definition 25 (Almost Surely) If a property P (s) is false with probability 0 with respect to some distribu-
tion over s, then it is said to hold almost surely. This is equivalent to saying P (s) is true almost everywhere
with respect to the probability measure associated with the distribution.

Fact E.11 For a non-negative measurable function f and measure µ,
∫
fdµ = 0 if and only if f(x) = 0

almost everywhere.

Fact E.12 For any measurable function f and signed measure ν, if
∫
X fdν = 0 for all measurable X , then

f = 0 almost everywhere.

The second fact follows from the first by a standard argument — decompose f into its positive and negative
parts and decompose ν according to its Hahn decomposition. This partitions the space into four sets over
which the integral may be written as a non-negative function with respect to a non-negative measure. Apply
Fact E.11 to each of the four sets.

E.3 Extrema

Definition 26 (Supremum/Infimum) For a set S, the supremum of S, denoted supS, is the smallest value
x such that x ≥ s for all s ∈ S. Similarly, the infimum of s is the largest value x such that x ≤ s for all
s ∈ S.
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Definition 27 (Limit Superior/Inferior) For a real-valued function f : Rn → R, the limit superior, de-
noted lim supu→b f(u), may be defined as follows:

lim sup
u→b

f(u) = lim
ε→0

(
sup

u∈BALL(b,ε)
f(u)

)

where BALL(b, ε) is the open ball of radius ε centered at b. It is an upper bound on the limit of f(ui) for
any sequence of values {ui} that converges to b. The lim inf is defined similarly. Note that while the limit
may not exist as u→ b, the lim sup and lim inf are always well defined for real-valued functions.

It is natural to generalize sup and lim sup to almost everywhere:

Definition 28 (Essential Supremum/Infimum) The essential supremum of a set S, denoted ess supS, is
the smallest value x such that x ≥ s almost everywhere, i.e. the set of values T = {s|s ∈ S and s > x} has
measure zero. The essential infimum ess inf is defined similarly.

Definition 29 (limesssup/limessinf) For a function f : Rn → R, the lim ess supu→b f(u) can be defined
as follows:

lim ess sup
u→b

f(u) = lim
ε→0

(
ess sup

u∈BALL(b,ε)
f(u)

)
.

It can be understood as a version of the lim sup that will ignore values that f(x) only attains on sets
with measure zero. The lim ess inf is defined similarly. Like the lim sup and lim inf , the lim ess sup and
lim ess inf are always well defined for real-valued functions.
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