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Abstract

Economics and Computation:
Ad Auctions and Other Stories

by

Christopher A. Wilkens

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Christos H. Papadimitriou, Chair

There is a growing research tradition in the interface between Economics and Computer
Science: Economic insights and questions about incentives inform the design of systems,
while concepts from the theory of computation help illuminate classical Economics problems.
This dissertation presents results in both directions of the intellectual exchange.

Originally designed by industry engineers, the sponsored search auction has raised many
interesting questions and spurred much research in auction design. For example, early auc-
tions were based on a first-price payment model and proved to be highly unstable — this
dissertation explores how improvements in the bidding language could restore stability. We
also show that a first-price auction offers substantially better performance guarantees when a
single advertiser may benefit from multiple ads. Another interesting problem arises because
sponsored search auctions must operate with limited information about a user’s behavior
— we show how sampling can maintain incentive compatibility even when the auctioneer
incorrectly predicts the user’s behavior.

Computational tools also offer novel ways to understand the limits of complex economic
systems. For example, a fundamental observation in this intellectual exchange is that peo-
ple cannot be expected to solve computationally intractable problems. We show that this
insight engenders a new form of stability we call complexity equilibria: when production has
economies of scale, markets may be stable because finding a good deviation is computa-
tionally intractable. We also use techniques from communication complexity to show that
equilibrium prices, even when they exist, may need to encode an impractical amount of
information to guarantee that a market clears.
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Chapter 1

Introduction

In 1936, an aspiring young mathematician named Alan Turing realized that understanding
the true limits of Logic required more than just syntax and semantics: it required a machine.
This is how the Turing machine — and the field of Computer Science — was born.

Today, theoretical economics has arrived at a similar crossroads. Its mathematical for-
malization has been wildly successful, yet, it still fails to give us a complete understanding
of the way markets, social networks, and other complex economic systems function. Indeed,
the behavior of an economic system is fundamentally a computation; thus, understanding
such systems requires that we make the same leap Turing did many years ago.

Over the past twenty years, researchers at the intersection of Economics and Computer
Science have explored many aspects of this fundamental relationship. One of the first con-
nections between the two fields came from the recognition that complex economic systems
are fundamentally computational. Economists have long sought to understand basic ques-
tions about economic systems — what does a market do? What strategies do bidders use
in a repeated auction? Such questions occasionally have simple answers — the market price
of oil goes up when a refinery burns down, or a bidder who feels cheated will lower her
bid. However, just as often the answers are beyond the grasp of modern economics — we
do not know how to accurately predict stock market crashes or the aggregate behavior of
advertisers in a complex ad auction. Viewing a market, auction, or other economic system
as a computation invites us to apply techniques from computer science to understand its
behavior.

Computational tools are also useful for designing economic systems. In 1981, Myerson [71]
asked a straightforward question: how should a seller, who wishes to maximize revenue, auc-
tion an item to a group of bidders? While simple, his question was groundbreaking because
it was a question of engineering — alongside the work of Maskin and Hurwicz, Myerson’s
seminal study launched the engineering side of game theory now known as mechanism design.
Computer science, as a discipline largely focused on engineering, has much to offer mecha-
nism design — it has both techniques for measuring and designing good systems as well as
systems in need of economic engineering. This dissertation explores a variety of descriptive
and prescriptive questions inspired by ad auctions and markets.
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1.1 The Sponsored Search Auction

In 1996, Goto.com introduced a revolutionary model of paid search. Instead of building
a complicated ranking algorithm like its contemporaries, Goto.com (later Overture.com)
asked websites to bid on search keywords and displayed the highest bidders on top. In
effect, the engineers had built a real-time auction for selling internet advertising. Today,
such sponsored search auctions dominate the multi-billion-dollar search advertising world
(ads shown alongside search results) and raise a wide variety of research questions.

Dynamic Auctions

In the standard microeconomic approach, an economic system (auction, market, etc.) is
constructed as an aggregate of individual agents (bidders, buyers, sellers, etc.). Each agent
is defined by her behavior, i.e., by the algorithm that describes her choices.

An algorithmic perspective is especially natural in dynamic (repeated) auctions: because
agents’ behavior evolves over time, it can be likened to a learning algorithm. Economists and
computer scientists alike have pursued this connection, for example, by borrowing the notion
of regret from machine learning and showing that a system will converge to a correlated
equilibrium if all agents’ behavior satisfies a no-regret property [37, 32].

In Chapter 2 (work with Darrell Hoy and Kamal Jain [45]), we study repeated first-
price auctions and show that simple, natural properties of bidder behavior can imply robust
guarantees about an auction’s outcome. First-price auctions, where the highest bidder wins
and pays what she bid, are popular in practice for their simplicity and transparency; un-
fortunately, they are poorly understood in theory because the strategy of a rational bidder
depends substantially on her beliefs about other bidders. While many implementations have
been quite successful, including procurement auctions and treasury bill auctions, others have
not. Our poor understanding of first-price auctions was exemplified by the failure of Over-
ture’s (Goto’s) generalization of the first-price ad auction — the company’s groundbreaking
generalized first-price auction for sponsored search advertising was so unstable that history
records it merely as a stepping stone on the road to Google’s generalized second-price auction.

Our results show that when a repeated first-price auction is generalized carefully — in
a way that allows bidders to express the final utility they desire — simple and natural
properties of bidder behavior imply robust guarantees about the auction’s outcome. As an
illustration, consider a standard first-price single-item auction and suppose that a loser will
raise her bid to try to win. Similar to the behavior of an ascending auction, it naturally
follows that the final sale price will eventually reach the maximum willingness to pay of the
second highest bidder. In more general settings, we show that analogous axioms of bidder
behavior can imply similarly robust guarantees for the outcome of the auction. Importantly,
while we do demonstrate bidder behavior that explicitly converges, such results show that
important properties of an auction’s outcome (revenue, efficiency, etc.) may be characterized
without any guarantee that bids will converge to an equilibrium.
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Coopetitive Ad Auctions. Another issue arising in advertising is that a single ad will
often benefit many advertisers. For example, an ad for a Samsung laptop with an Intel
processor benefits Samsung, Intel, and Microsoft. In Chapter 3 (work with Darrell Hoy
and Kamal Jain [46]), we study the performance of ad auctions when accounting for such
effects. We first show that the status quo — advertisers can only cooperate through external
contracts — can and currently does create outcomes that are undesirable either for the
advertisers or for the auctioneer. We thus argue that an auctioneer should run a coopetitive
ad auction, that is, the auctioneer should account for the broad benefit of a single ad.
Unfortunately, we also show that the standard VCG auction is unpalatable for the auctioneer
because it may not generate any revenue. Instead, we show that a first-price auction can
offer desirable guarantees in both efficiency and revenue, using techniques from Chapter 2
to characterize its performance.

Single-Call Mechanisms. A third problem that arises in sponsored search auctions is
a lack of information: Google and other companies that sell advertising do not know the
likelihood that a user will click on any particular advertisement. Instead, they build compli-
cated systems to learn and predict these likelihoods. Unfortunately, standard auction theory
assumes the auctioneer has complete information. As a result, properties like incentive com-
patibility fall apart. In fact, this is an instance of a more general problem: any time bidders’
values depends on some unknown action of nature, standard auctions may lose incentive
compatibility.

In Chapter 4 (work with Balasubramanian Sivan [91]), we explore randomized mecha-
nisms called single-call mechanisms that recover incentive compatibility in expectation with
very limited information. The key idea of a single-call mechanism, first demonstrated by
Babaioff et al. [9], is that the allocation procedure (e.g., the computer system that estimates
the likelihood of a click, assigns advertisements to slots, and measures the result) can be
viewed as a black box which the mechanism can only call once.

The following question then arises: what mechanisms can be implemented under the
single-call restriction, and what are their trade-offs? To answer this question, we first char-
acterize all general single-call constructions for two important domains (single-parameter
and MIDR) and show that they have very simple structures. Next, we use our characteriza-
tions to show that the auctioneer faces a substantial trade-off between the expected quality
of the auction and the variance of its payments. While our lower-bounds suggest that the
most general single-call mechanisms are an impractical solution for real-world auctions, they
leave open the possibility of better single-call mechanisms for specific domains. Our charac-
terizations also offer useful insight into the structure of certain randomized mechanisms.

1.2 Complexity Theory and Markets

The study of markets often focuses on a straightforward question: what do they do? A dom-
inant perspective in theoretical microeconomics is that markets reach a market equilibrium
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— a configuration in which each agent is selfishly optimizing her own profit or utility subject
to market prices. This so-called theory of general equilibrium has developed over the past
few centuries, beginning with classical economic ideas like the “invisible hand of the market”
from Adam Smith’s The Wealth of Nations and the “fictitious auctioneer” of Leon Walras’s
Elements of Pure Economics, and climaxing with Arrow and Debreu’s seminal proof that
equilibria always exist in a large class of markets [5]. Implicit in much of this theory is an
assumption that a market can reach an equilibrium whenever it exists.

Adopting a computational perspective raises a new question: even if a market equilibrium
exists, is it reasonable to assume that a market will reach it? Unfortunately, finding an
equilibrium may be computationally intractable, and therefore neither a large computer nor
a market — which is effectively a large, distributed computer — can be expected to compute
an equilibrium. Twenty years ago, Christos Papadimitriou [78] recognized that complexity
theory offered rigorous tools to understand when an equilibrium might be reachable and
inspired a long line of research on the complexity of equilibria.

More generally, complexity theory offers rigorous techniques to understand what a com-
putation can and cannot do and thus provides a non-constructive framework to understand
the limitations of complex economic systems.

Markets with Economies of Scale and Complexity Equilibria. In Chapter 5 (work
with Christos Papadimitriou [80]), we ask how the computational tractability of equilibrium
is affected by economies of scale in production. Economies of scale — e.g. the fact that
the millionth car is easier to produce than the first — occur quite naturally, yet they are
explicitly disallowed in Arrow and Debreu’s model. The economic theorist’s approach is to
relax the requirements of equilibrium and hope that a market might still satisfy its first-order
conditions [33], reaching a so-called marginal-price equilibrium. We show that even satisfying
these first-order conditions in the presence of economies of scale is harder than computing
Arrow and Debreu’s equilibrium — NP-hard1 versus PPAD-complete — suggesting that
marginal-price equilibrium is not a priori a reasonable predictor of market behavior. The
key idea in our work is the observation that up-front investment costs (fixed costs) can force
markets to make discrete choices — e.g. a factory can produce microchips or cars, but not
a mixture of the two — and therefore encode a discrete problem like SAT.

In [80], we also identify a new phenomenon which we call complexity equilibria: in markets
with economies of scale in production, some configurations can masquerade as equilibria
because it is computationally intractable (NP-hard) to discover that the configuration is
not a market equilibrium. We offer examples of complexity equilibria where the notion of
NP-hardness is both worst-case and average-case.

Market Communication Complexity. Communication complexity offers another set
of tools with which to study the limitations of market equilibrium. Since players make in-
dependent decisions, the market must reveal enough information that players can correctly

1Specifically, it is F∆P
2 -complete.
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identify their equilibrium behaviors. Classical economic results on the dimensionality of mes-
sage spaces show that, when information is communicated through real numbers, normalized
prices (one real number per good) are both necessary [48, 70] and sufficient [5]. However,
these results ignore the fact that prices are rarely represented as real numbers; instead, they
are often fixed-precision values rounded to the nearest whole number, hundred, or even thou-
sand. Deng et al. [23] introduced a model of market communication complexity and offered a
lower-bound on the number of bits of information that prices must contain to communicate
equilibrium behavior to the players.

In Chapter 6 (based on [90]), we give a substantially tighter bound than [23] and extend
their results to markets with production. We show that the number of bits of information
that must be contained in prices is polynomial not only in the number of goods, but also in
the number of consumers and firms in the market.
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Part I

Mechanism Design and Sponsored
Search
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Chapter 2

Dynamic Axioms and First-Price
Auctions

The first-price auction is popular in practice for its simplicity and transparency. Moreover, its
potential virtues grow in complex settings where incentive compatible auctions may generate
little or no revenue. Unfortunately, the first-price auction is poorly understood in theory
because equilibrium is not a priori a credible predictor of bidder behavior.

In this chapter, we take a dynamic approach to studying first-price auctions: rather than
basing performance guarantees solely on static equilibria, we study the repeated setting
and show that robust performance guarantees may be derived from simple axioms of bidder
behavior. For example, as long as a loser raises her bid quickly, a standard first-price auction
will generate at least as much revenue as a second-price auction.

We generalize this dynamic technique to complex pay-your-bid auction settings: as long
as losers do not wait too long to raise bids, a first-price auction will reach an envy-free state
that implies a strong lower-bound on revenue; as long as winners occasionally experiment by
lowering their bids, the outcome will near the boundary of this envy-free set so bidders do
not overpay; and when players with the largest payoffs are the least patient, bids converge to
the egalitarian equilibrium. Significantly, bidders need only know whether they are winning
or losing in order to implement such behavior.

Along the way, we find that the auctioneer’s choice of bidding language is critical when
generalizing beyond the single-item setting, and we propose a specific construction called the
utility-target auction that performs well. The utility-target auction includes a bidder’s final
utility as an additional parameter, identifying the single dimension along which she wishes to
compete. This auction is closely related to profit-target bidding in first-price and ascending
proxy package auctions and gives strong revenue guarantees for a variety of complex auction
environments. Of particular interest, the guaranteed existence of a pure-strategy equilibrium
in the utility-target auction shows how Overture might have eliminated the cyclic behavior
in their generalized first-price sponsored search auction if bidders could have placed more
sophisticated bids.
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2.1 Introduction

In 1961, Vickrey [87] initiated the formal study of auctions. He first considered common
auctions of the day — including the first-price auction, the Dutch auction, and the English
auction — and studied their equilibria. Vickrey observed that the English auction was, in
theory, more robust because each player had a strategy that dominated all others regardless
of other players’ bids. As a solution, he proposed1 the second-price auction as a means to
achieve the same robustness in a sealed-bid format. The subsequent development of auction
theory largely followed Vickrey’s paradigm: existing auctions were evaluated in terms of
their equilibria, meanwhile the field of mechanism design emerged with dominant strategy
incentive compatibility as a sine qua non.

Fifty years later, it is apparent that Vickrey’s analysis does not always give best guide to
implementing a real auction. In mechanisms without dominant strategies, Vickrey’s original
concern still stands — equilibrium is a highly questionable predictor of outcome due (at least
in part) to players’ informational limitations [87, 35]. Neither is dominant strategy incentive
compatibility a magic solution: incentive compatible mechanisms have sufficiently many
drawbacks that their real attractiveness rarely matches theory — the simple and elegant
second-price auction has earned the title “Lovely but Lonely” [7] for its sparse use. Even the
supposition that bidders will play strategies that are theoretically dominant is discredited
by a wide variety of practical issues [57].

Dynamic analysis offers a powerful complement to Vickrey’s static approach. For exam-
ple, certain behavior will be unsustainable when an auction is repeated. Such reasoning was
used by Edelman and Schwarz [30] in the context of the generalized second-price (GSP) ad
auction — they analyzed a dynamic game to derive bounds on reasonable outcomes of the
auction, then studied the static game under the assumption that these bounds were satisfied.
Dynamic settings also introduce new pitfalls: Edelman and Ostrovsky [28] showed that the
instability of Overture’s generalized first-price (GFP) ad auction could be attributed to its
lack of a pure-strategy equilibrium.

We study repeated first-price auctions and show that they offer powerful performance
guarantees. We begin with a static perspective and observe that the equilibrium properties
of the auction depend significantly on the types of bids that bidders can express. We propose
a generalization of the first-price auction called the utility-target auction that is closely related
to profit-target bidding in first-price and ascending proxy package auctions [67, 22]. Like
these package auctions, we show that the utility-target auction possess many advantages over
incentive compatible mechanisms in a static equilibrium analysis, including revenue, simplic-
ity, and transparency. More significantly, we show that the same performance guarantees may
be derived using only a few simple behavioral axioms and limited information in a repeated
setting. These dynamic results are particularly powerful because they do not require an a
priori assumption that the auction will reach equilibrium — for example, assuming only that

1While Vickrey was the first to discover the second-price auction in the economics literature, it has been
used in practice as early as 1893 [64].
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losers will not wait too long to raise their bids the auctioneer’s revenue satisfies a natural
lower bound regardless of whether bidders’ behavior converges to equilibrium. Moreover, bid-
ders need only know if they are winning or losing to implement the dynamics. We build on
these axioms to demonstrate behavior that offers progressively stronger performance guar-
antees, culminating with a set of axioms that together imply convergence to the egalitarian
equilibrium.

First-Price Auctions. The virtues of a first-price auction — and other auctions in the
pay-your-bid family — arise from its simplicity. From the bidders’ perspective, the pay-
your-bid property offers transparency, credibility, and privacy: not only is the auction easy
to understand, but it ensures that the auctioneer cannot cheat (say, by unreasonably inflating
the reserve price in a repeated auction) and allows a bidder to participate without expressing
her true willingness to pay.

The auctioneer can also benefit from this simplicity because players’ bids represent guar-
anteed revenue. By comparison, the revenue from a dominant strategy incentive compatible
auction is almost always less than the bids and, in the most general settings, may even be
zero [7, 82]. Supposing a first-price auction reaches equilibrium, a variety of work presents
settings where they generate more revenue for the seller than their incentive compatible
brethren [67, 63] (though they may also generate less revenue [66]), and we discuss a specific
example from ad auctions in Chapter 3.

Yet, running a first-price auction is risky. While first-price auctions have been quite
successful in settings like treasury bill and procurement auctions, Overture’s generalized first-
price (GFP) auction for sponsored search advertising was erratic: bids rapidly rose and fell
in a sawtooth pattern, rendering the auction unpredictable and depressing revenue [28]. As a
result, the sponsored search industry has moved to a generalized second-price (GSP) auction
that leverages the intuition of the second-price auction to disincentivize small adjustments
to a player’s bid.

The challenges of a first-price auction are many and complex. Vickrey identified a major
source of risk in the first-price single-item auction: since a rational bidder’s optimal bid
depends on other players’ bids, actual behavior will depend on beliefs about others’ strategies.
A first-price auction also requires bidders to strategize, a task that is may be difficult and
expensive. At best, players will be in a Bayesian equilibrium, and, at worst, they will be
completely unpredictable. Indeed, predicting the outcome of a first-price auction lies at the
center of a lively debate between experimental and theoretical economists [35].

Experience with GFP highlights another potential pitfall of first-price auctions: when
generalized beyond the single-item setting, a first-price auction may not have a pure-strategy
equilibrium. Edelman and Ostrovsky [28] showed that this was the case with GFP and
demonstrated how it generated the rapid sawtooth behavior seen in practice. Our goal is to
demonstrate that how proper design coupled with dynamic arguments can support strong
performance guarantees.
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The Utility-Target Auction. The equilibria and performance of a pay-your-bid auction
depend on its implementation. Within the pay-your-bid constraint, the auctioneer chooses
the form of players’ bids, potentially restricting or broadening the bids that players may
express.

The historical performance of the GFP ad auction exemplifies the importance of choosing
a good bidding language. In the GFP auction, advertisers placed a single bid and paid the
bid price for each click regardless of where their ads were shown. In retrospect, the rapid
sawtooth motion observed in bids is not surprising because the auction had no pure-strategy
equilibrium [29, 28]; however, we show that a pure-strategy equilibrium would have existed
if bidders could have placed more expressive bids, such as bidding different prices for each
slot.

A natural question arises: what are good bidding languages and how complicated must a
language be to offer good performance? In GFP, the bidding language is precisely sufficient
to represent any possible valuation function; hence, it is possible that bids may need to be
more expressive than the space of valuation functions.

We show that the overhead required for a good bidding language is at most a single value:
it is sufficient to ask bidders for their valuation function and their final desired utility. We
call such an auction a utility-target auction: a player’s bid includes a specification of her
value for every outcome and a single number representing the utility-target that she requests
regardless of the outcome. Her payment is her claimed value for the final outcome minus the
utility-target that she requested, and the auctioneer chooses the outcome that maximizes the
total payment. In essence, the utility-target auction isolates the single dimension (utility)
along which a bidder truly wishes to strategize.

We begin with a static analysis of the utility-target auction’s equilibria. We first show
that the utility-target auction is quasi-incentive compatible: a bidder never has an incentive
to misreport her valuation function — it is always sufficient for her to manipulate the utility-
target she requests. Moreover, we show that a pure-strategy equilibrium always exists and
that the egalitarian equilibrium is efficiently computable. These results are closely related
to profit-target equilibria in package auctions [67].

Next, we show that the utility-target auction offers good equilibrium performance. Simi-
lar to the approach of Edelman, Ostrovsky, and Schwarz [29] on the generalized second-price
(GSP) auction, we show that all equilibria satisfying a natural envy-free criterion have good
performance. First, such equilibria are efficient and generate at least as much revenue as the
incentive compatible Vickrey-Clarke-Groves (VCG) mechanism. Moreover, they generate
revenue even when the incentive compatible mechanisms fail — the revenue of the envy-free
equilibria of a utility-target auction all meet an intuitive benchmark we call the second-price
threat, even settings where the VCG mechanism may make little or no revenue. Again, this
bound is related to the core property of profit-target equilibria in package auctions [67, 22].

Dynamic Analysis through Behavioral Axioms. A significant novelty of our work is
our use of simple behavioral axioms to prove guarantees on the performance of utility-target
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auctions.
Dynamic arguments are generally fraught with peril: in addition to being difficult to

prove, more complex auctions (or markets, or games) require more complex bidding behavior
to converge to an equilibrium and therefore sacrifice robustness. For example, Walrasian
tâtonnement2 [88] is perhaps the earliest concrete dynamic procedure proposed in economics
— it converges in general markets when modeled as a particular continuous process [84, 4]
but may or may not converge as a discrete process [12, 20]. More recent results have sought
stronger guarantees, e.g. by showing that players’ behavior will converge to equilibrium in
repeated games as long as their learning strategies are “adaptive and sophisticated” [69] or
no-regret [37, 32]. However, these properties are sufficiently complicated that it is difficult
to evaluate whether players’ strategies indeed satisfy them in practice.

In contrast, we build simple behavioral axioms and use them to prove performance guar-
antees. Our first axioms are that (a) a bidder who is losing will raise her bid to try to
win, and (b) a bidder who is losing is more impatient than a bidder who is winning. After
formalizing these axioms in the context of utility-target auctions, we show that the auction
will eventually reach an outcome that satisfies a natural notion of envy-freeness and, by
extension, a natural second-price type bound on revenue. Significantly, this result neither
implies nor requires that players’ bids converge to a steady-state. Moreover, bidder behavior
requires only knowing whether one is winning or losing, not the precise bids of other players.

Next, we show that bidders will not overpay if two more axioms are also satisfied, namely
that (c) bidders who are winning will try to lower their bid to save money. Axioms (a)-(c)
guarantee that bids will ultimately remain close to the boundary between envy-free and
non-envy-free outcomes, a boundary which contains the envy-free equilibria. These axioms
offer a degree of robustness, since bids will seek this boundary even as bids and ads change.

Finally, we show that bids will converge to the egalitarian equilibrium — the equilibrium
that distributes utility most evenly — if a fourth axiom is satisfied. The fourth axiom
concerns the timing of raised bids: (d) the bidder who has the most value at risk is the least
patient and therefore raises her bid first. When bidder behavior satisfies all five axioms (a)-
(d), we show that bids will converge to the egalitarian equilibrium. Together, these results
offer powerful guarantees about the performance of a utility-target auction in a repeated
setting.

Related Work. Our utility-target auction is most closely related to first-price package
auctions [14] and the ascending proxy auction [67]. Profit-target bidding in these auctions is
closely related to quasi-truthful bidding in utility-target auctions, and the static properties
we prove in Section 2.4 all have direct analogues. In contrast, the utility-target auction
can be applied beyond the package auction setting (e.g. to ad auctions), and our dynamic
analysis is entirely new, a more general confirmation of Milgrom’s postulate that profit-target
equilibria “may describe a central tendency for some kinds of environments” [67].

2To justify market equilibrium as a predictor of actual market behavior, Leon Walras described a dynamic
procedure called tâtonnement that might converge to it.
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Auctions in which a player’s bid directly specifies her payment are known as pay-your-bid
auctions. The first-price auction, as well as the Dutch an English auctions, are members of
this family. Our utility-target auction is closely related to first-price and ascending proxy
package auctions [67]. Engelbrecht-Wiggans and Kahn [31] explored multi-unit, sealed-
bid pay-your-bid auctions and found their equilibria to be substantially different from the
standard first-price auction — the core issue they encounter is the same one arising in GFP.

A key reason repeated auctions may admit more robust performance guarantees is that
bidders can learn about others’ valuations. A similar informational exchange is present in
and a motivation for classic ascending auctions. In addition to his discussion of ascending
proxy auctions [67], Milgrom offers a broad discussion of this literature in [68]. Some recent
work studies ascending auctions for position auctions like sponsored search [29, 6].

Our work can also be seen through the lens of simple versus optimal mechanisms [40].
The general goal of this line of research is to design a mechanism that is simple and transpar-
ent while (possibly) sacrificing efficiency or revenue. For example, Hart and Nisan analyze
the tradeoff between the number of different bundles offered to a buyer and an auction’s per-
formance [38]. By comparison, our results show that a first-price auction can guarantee good
performance when the bidding complexity is only slightly larger than that of the valuation
functions.

2.2 Definitions and Preliminaries

The utility-target auction is a generalization of the first-price auction. Its key feature is
an extra utility-target parameter in the bid — this parameter highlights the key dimension
along which bidders care to compete. It gives bidders sufficient flexibility to guarantee the
existence of pure-strategy equilibria while minimizing the communication required between
the bidders and the auctioneer.

First-Price and Pay-Your-Bid Auctions.

An auction is a protocol through which players bid to select an outcome. A standard sealed-
bid auction can be decomposed into three stages: (1) each player i submits a bid bi, (2) the
auctioneer uses players’ bids to pick an outcome o from a set O, and finally (3) each player i
pays a price pi. The final utility of player i is given by vi(o)− pi, where vi(o) ≥ 0 denotes i’s
value for the outcome o, i.e. vi ∈ Vi is i’s valuation function (drawn from a publicly known
set Vi).

From this perspective, the standard first-price auction is described as follows: (1) each
player submits a single number bi ∈ R, (2) the auctioneer chooses to give the item to the
player i∗ who submits the largest bid bi, and (3) the winner i∗ pays bi∗ and everyone else
pays zero. For comparison, the second-price auction is identical to the first-price auction
except that the price paid is equal to the second-highest value of bi.
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When the outcomes are few, we will use vi and bi to denote the profile of values and bids
across outcomes, e.g., vi = (1, 1.5, 0).

When considering settings beyond the single-item auction there are many ways to gener-
alize the first-price auction. Even within the single-item setting, the auctioneer could choose
an arbitrary encoding for players’ bids. Moreover, the auctioneer might choose an encoding
that changes the space of possible bids, e.g by forcing bidders to place integer bids when
values are actually real numbers. In such cases, the principle feature that we wish to preserve
is that the winner “pays what she bid,” or alternatively that a player’s bid precisely specifies
her payment. Formally, we say that such an auction has the pay-your-bid property:

Definition 1 An auction has the pay-your-bid property if the payment pi depends only on
the outcome o and i’s bid bi (it does not directly depend on others’ bids).

The first-price auction as described above clearly satisfies this property while a second-price
auction does not.

Not all sealed-bid pay-your-bid auctions are equivalent. Edelman et al. [29] showed that
GFP, where the set of possible bids is precisely Vi, did not have a pure-strategy equilibrium:

Observation 1 The pay-your-bid property does not guarantee the existence of a pure-strategy
equilibrium in a sealed-bid auction when the space of bids is the same as the space of valuation
functions.

Moreover, as we discuss in Section 2.5, any pay-your-bid ad auction where bids are restricted
to a subset of Vi must suffer in terms of its welfare and revenue guarantees. Thus, it is import
to consider auctions that allows bids bi 6∈ Vi. This motivates us to introduce the utility-target
auction, a sealed-bid pay-your-bid auction that allows such bids and always has pure-strategy
equilibria with strong performance guarantees.

Utility-Target Auctions

A utility-target auction is a sealed-bid pay-your-bid auction with a special bidding language.
A player’s bid specifies payments using two pieces of information: her valuation function
and the amount of utility she requests (a single real number). Her payment for an outcome
is her (claimed) valuation for that outcome minus the utility that she specified in her bid.
Formally:

Definition 2 A utility-target auction for a finite outcome space O is defined as follows:

• A bid is a tuple bi = (xi, πi) where x ∈ Vi is a function mapping outcomes o ∈ O to
nonnegative values and π is a real number. We call the parameters xi and πi the value
bid and utility-target bid respectively.
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ALGORITHM 1: A generic utility-target auction.

input : Players’ bids bi = (xi, πi)
output: An outcome o∗ and first-price payments pi.

1 Let bi(o) = max(0, xi(o)− πi); // bi(o) is i’s effective bid for outcome o.
2 Compute o∗ = argmaxo

∑
i∈[n] bi(o); // Choose the outcome with the highest

total bid.

3 For all i, set pi = bi(o
∗); // Each player pays what she bid.

• A bidder’s effective bid for outcome o is

bi(o) = max(xi(o)− πi, 0) .

Note this may generate bi 6∈ Vi when the set Vi is sufficiently restricted.

• The auctioneer chooses the outcome o∗ ∈ O that maximizes
∑

i∈[n] bi(o). Ties are
broken in favor of the most-recent winning outcome when applicable.

• When the outcome is o, bidder i pays pi(o) = bi(o) and derives utility ui(o) = vi(o) −
bi(o). Note that if a bidder reports xi = vi, then ui(o) = πi whenever vi(o) ≥ πi.

A generic utility-target auction is illustrated in Algorithm 1.

2.3 Quasi-Truthful Bidding

An idealist’s intuition for the utility-target auction is that players truthfully reveal their
valuation function through their value bids (i.e. they bid bid xi = vi) and then use the
utility-target bid πi to strategize. Clearly, bidders need not follow this ideal; however, it
turns out that they have no incentive to do otherwise — the utility-target auction is quasi-
truthful in the sense that for any bid a player might consider, there is another bid in which
she reveals vi truthfully and obtains at least as much utility:

Lemma 1 (Quasi-Truthfulness) Fix the total bid of players j 6= i for all outcomes, i.e.
fix
∑

j∈[n]\{i} bj(o) for all o, and suppose ties are broken according to a fixed total-ordering on

outcomes. If bidder i gets uIi by bidding (xIi , π
I
i ), then she gets the same utility uIi by bidding

(vi, u
I
i ).

Significantly, this implies bidder i always has a quasi-truthful best-response.
Proof: Since ties are broken according to a fixed total ordering, the outcome is fully specified
by the total bids for each outcome (i.e. by

∑
i∈[n] bi(o) for all o). Thus, given

∑
j∈[n]\{i} bj(o)

and a bid bIi = (xIi , π
I
i ) for i, the outcome oI is uniquely defined. Let πIi be the utility i gets

by bidding (xIi , π
I
i ), i.e.

uIi = vi(o
I)− bi(oI) = vi(o

I)−max(xIi (o
I)− πIi , 0) .
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Now suppose i bids bQi = (vi, u
I
i ) instead of (xIi , π

I
i ). There are two possible results of this

change:

• The outcome doesn’t change. If the outcome doesn’t change, then i gets the same
utility by construction.

• The outcome changes to oQ 6= oI . Notice that i did not change the amount bid for
outcome oI , so the total bid for oI did not change. Given this and the tie-breaking rule,
the only way the outcome can switch from oI to oQ is if the total bid for oQ strictly
increased. Given that

∑
j∈[n]\{i} bj(o

Q) is fixed, this implies i’s bid for oQ increased, i.e.

bQi (oQ) > bIi (o
Q) ≥ 0.

Next, by definition of a utility-target auction, bi(o) > 0 implies xi(o) > πi(o). Since
bQi (oQ) ≥ 0, this implies vi(o

Q) > πQi , from which it immediately follows that i’s final
utility in oQ will be πQi .

In either case, i’s final utility is precisely uIi , so i is indifferent between bidding (xIi , π
I
i ) and

(vi, u
I
i ).

2.4 Static Equilibrium Analysis

We begin by studying the utility-target auction from a static perspective and show that they
offer strong revenue and welfare guarantees. First, we show that pure-strategy equilibria
always exist:

Theorem 2 A utility-target auction with n outcomes always has a pure-strategy coopera-
tively envy-free (defined below) equilibrium that is computable in time poly(n).

Specifically, the egalitarian equilibrium exists and is efficiently computable by Algorithm 2
(proof omitted).

Next, we show that such cooperatively envy-free equilibria not only maximize welfare
but offer as much revenue as the VCG mechanism as well as a new revenue benchmark we
call the second-price threat (defined below):

Theorem 3 Any cooperatively envy-free equilibrium of a utility-target auction

1. maximizes social welfare,

2. dominates the revenue of the VCG mechanism,

3. and has revenue lower-bounded by the second-price threat.

We formalize and prove the theorem below.
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Cooperatively Envy-Free Equilibria

While a typical utility-target auction may have many equilibria, some of them are unrealistic
in repeated auctions. In particular, it is possible to have an equilibrium in which a group of
“losers” envy the “winners” — the losers would be happy to collectively raise their bids to
make an alternate outcome win, but the outcome is an equilibrium because no single bidder
is willing to raise her bid high enough. In a repeated setting, one would expect all the losers
to eventually raise their bids.

For example, consider a setting with three bidders (A,B,C) and three outcomes (1, 2, 3),
in which the first two bidders are symmetric and value the first two outcomes and the third
bidder values only the third outcome. Let the specific values, indexed by outcome, be

vA = (1, 1.5, 0),

vB = (1, 1.5, 0),

vD = (0, 0, 2).

Now, let A and B bid for the first outcome, and C bid for the third outcome, with bids:
bA = (1, 0, 0), bB = (1, 0, 0) and bC = (0, 0, 2).

Bidders A and B would prefer the second outcome to the first as they see a value of 1.5
instead of 1. Moreover, they would be happy to make the second outcome win by cooperating
and each bidding 1 + ε. However, since both are bidding 0 for the second outcome, neither
can unilaterally cause the second outcome to win, making this outcome an equilibrium. The
problem in this example is that, at a total price of 2, bidders A and B would prefer that
the second outcome wins. In a sense, bidders A and B in the second outcome envy the deal
they received in the first outcome.

Hence, we are interested in bids such that players have no incentive to cooperatively
deviate to get a better outcome. We will call such a set of bids cooperatively-envy free.

To define such a notion, we must also consider bidders who are happy with the winning
outcome. Consider a four bidder setting with three possible outcomes, with the following
values:

vA = (1, 1.5, 0),

vB = (1, 1.5, 0),

vC = (1, 0.5, 0),

vD = (0, 0, 2).

In this case, C cannot get a better deal from the second outcome, so she will not cooperate
with A and B. In order to win, A and B must collectively bid 1.75 in the second outcome
to make up the deficit between it and the winning outcome (which they are willing to do).

Definition 3 The set of bids {bi}i∈[n] are cooperatively envy-free (CEF) if there is no subset
of bidders B ⊆ [n] who would prefer to cooperatively pay the extra money required to make
an alternate outcome o win over the current winner o∗.
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Formally, a set of bids is cooperatively envy-free if∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) ≤

∑
i∈[n]

bi(o
∗)− bi(o)

for all outcomes o.

The CEF constraints are similar to the core property described by Milgrom [67] in package
auctions (as well as notions like group-strategyproofness); however, the notion of a CEF
outcome is weaker. For example, it does not require that bidders are playing equilibrium
strategies.

Equilibria that are CEF have nice properties analogous to those of core equilibria in
package auctions:

Claim 1 CEF bids maximize welfare.

Proof:We want to show that
∑

i∈[n] vi(o
∗) ≥

∑
i∈[n] vi(o) for any outcome o and CEF equilib-

rium o∗. The envy-freeness constraints give∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) ≤

∑
i∈[n]

bi(o
∗)− bi(o)∑

i∈[n]

(vi(o)− bi(o))− (vi(o
∗)− bi(o∗)) ≤

∑
i∈[n]

bi(o
∗)− bi(o)∑

i∈[n]

vi(o)− vi(o∗) ≤ 0

as desired.

Claim 2 The revenue from CEF bids dominate that of the VCG mechanism: every player
pays at least as much in the CEF equilibrium as she would in the VCG mechanism.

Proof:Define oi as the outcome that maximizes the welfare of bidders except i:

oi = argmaxo
∑
j 6=i

vj(o) .

Thus, the VCG price of player i is
∑

j 6=i vj(o
i)− vj(o∗).
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Now, the envy-freeness constraints give

bi(o
∗) ≥

∑
j

max
(
(vj(o

i)− bj(oi))− (vj(o
∗)− bj(o∗)), 0

)
+ bi(o

∗)−
∑
j

(bj(o
∗)− bj(oi))

bi(o
∗) ≥

∑
j 6=i

(vj(o
i)− bj(oi))− (vj(o

∗)− bj(o∗))

−
∑
j 6=i

(bj(o
∗)− bj(oi)) + bi(o

i)

+ max
(
(vi(o

i)− bi(oi))− (vi(o
∗)− bi(o∗)), 0

)
bi(o

∗) ≥
∑
j 6=i

(vj(o
i)− vj(o∗)) + bi(o

i)

+ max
(
(vi(o

i)− bi(oi))− (vi(o
∗)− bi(o∗)), 0

)
bi(o

∗) ≥
∑
j 6=i

(vj(o
i)− vj(o∗)) .

The “Second-Price Threat”

The revenue of a CEF equilibrium also meets or exceeds a benchmark we call the second-
price threat. The revenue of the second-price auction has a convenient intuition: the price
paid by the winner should be at least as large as the maximum willingness to pay of any
other bidder. We can ask the same question in more general settings: how much would
“losers” be willing to pay to get an outcome o instead of the socially optimal outcome o∗?
In general, player i should be willing to pay up to vi(o)− vi(o∗) to help o beat o∗, hence we
can generalize the intuition of the second-price auction to give a natural lower bound on the
revenue the auctioneer might hope to earn:

Definition 4 The second-price threat for outcome o∗ is given by

max
o∈O

∑
i∈[n]

max(vi(o)− vi(o∗), 0) .

This bound is particularly powerful in cases where bidders share value for an outcome (cases
where VCG would make little or no revenue). For example, consider the following 4-bidder,
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ALGORITHM 2: An algorithm for computing the egalitarian equilibrium in a utility-
target auction.

input : A utility-target auction problem.
output: The egalitarian equilibrium bids b∗i = (vi, π

∗
i ).

1 Set all bids to (vi, 0). Call the socially optimal outcome o∗.
2 Increase πi for all bidders uniformly until some bidder i reaches πi = vi(o

∗) or a CEF
constraint would be violated for some outcome o.

3 Fix the bids of the newly-constrained advertisers.
4 Repeat (2) and (3), lowering only unfixed bids until all bidders are fixed.

2-outcome setting:

vA = (1, 0)

vB = (1, 0)

vC = (1, 0)

vD = (0, 2)

In a VCG auction, nobody pays anything. However, a näıve auctioneer might expect the
first outcome to win, with A, B, and C paying a total of $2 (the second-price threat) since
they are beating D.

The CEF constraints quickly imply that a CEF outcome generates at least as much
revenue as the second-price threat:

Claim 3 The revenue in any CEF outcome is lower-bounded by the second-price threat.

Proof:We want to show that∑
i∈[n]

bi(o
∗) ≥ max

o

∑
i∈[n]

max(vi(o)− vi(o∗), 0) .

For any outcome o, the envy-freeness constraints give∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) ≤

∑
i∈[n]

bi(o
∗)− bi(o)∑

i∈[n]

max (vi(o)− vi(o∗) + bi(o
∗), bi(o)) ≤

∑
i∈[n]

bi(o
∗)

∑
i∈[n]

max (vi(o)− vi(o∗), 0) ≤
∑
i∈[n]

∑
i∈[n]

bi(o
∗)

as desired.
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2.5 Utility-Target Auctions for Sponsored Search

Sponsored search advertising demonstrates the benefits of a utility-target auction. The
standard auction in this setting is the generalized second-price (GSP) auction; however, it
(and incentive-compatible VCG mechanisms) lack transparency: payments are complicated
to compute and bidders must trust the auctioneer not to abuse their knowledge when an
auction is repeated. Moreover, its performance may degrade when using more accurate
models of user behavior [83] and advertiser value (see Chapter 3). It can have misaligned
incentives when parameters are estimated incorrectly [91]. Some of these problems would be
solved by a first-price auction; however, Overture’s implementation of GFP demonstrated
that such schemes might be highly unstable. A utility-target auction offers the benefits of a
pay-your-bid auction without the instability of GFP.

The Utility-Target Ad Auction

We illustrate a utility-target auction in the standard model of sponsored search: n advertisers
compete for m ≤ n slots associated with a fixed keyword. An advertiser’s value depends
on the likelihood of a click, called the click-through-rate (CTR) c, and the value v to the
advertiser of a user who clicks. The CTR c is separable into a parameters βi that depends
on the advertiser and αj that depends on the slot, so the expected value to advertiser i
for having her ad shown in slot j is ci,jvi = αjβivi. As is standard, we assume that slots
are naturally ordered from best (j = 1) to worst (j = m), i.e. αj ≥ αj′ for all j < j′.
Without loss of generality, we assume bidders are ordered in decreasing order of bid, i.e.
b1 ≥ b2 ≥ · · · ≥ bn.

The auctioneer chooses a matching of advertisements to slots and charges an advertiser
a per-click price ppci. For example, in the GFP auction, advertisers submitted bids bi
representing their per-click payment and paid ppci = bi whenever a their ads were clicked.
Similarly, in the standard GSP auction, bidder i is charged according bid of the next highest
bidder.3 To account for differences in CTRs, this quantity is normalized by β so that bidder
i pays a per-click price of ppci = βi

βi+1
bi+1.

In a utility-target auction, bidders submit both their per-click value xi and the utility-
target bid πi (the utility that they request). The auctioneer picks the assignment j(i)
maximizing ∑

i∈[n]

max(0, αj(i)βixi − πi)

and charges i so that her expected payment is

E[pi] = max(0, αj(i)βixi − πi) .

3The designers of the GSP auction intended it to inherit the incentive compatibility of the second-price
auction. It does not; however, it has the nice property that bidder i pays the minimum amount required to
win the slot that she received.
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There are at least two interesting ways the utility-target auction can be implemented.
The first implementation charges

ppci = max

(
0, xi −

πi
αj(i)βi

)
to achieve the desired expected payment. In effect, it uses the utility request πi to compute
a different per-click bid for each slot. A practical downside to this implementation is that
the payments are still somewhat complicated from the bidders’ perspectives; however, the
auctioneer could mitigate this problem by publishing CTRs and displaying the per-click
payments in the bidding interface.

An alternative implementation of the utility-target auction pays a rebate of πi regardless
of whether a click occurred and charges precisely ppci = xi when a click occurs. This auction
is even simpler from the bidders’ perspective; however, when a click does not occur the
auctioneer will be paying the bidder (in expectation the bidder still pays the auctioneer).
This implementation of the utility-target auction is illustrated in Algorithm 3.

Such a utility-target auction offers many benefits over existing auction designs like GSP
and VCG. As noted earlier, a first-price auction directly increases transparency and simplicity
from the bidders’ perspective. Even if bidders reveal their true valuation functions vi, the
pay-your-bid property ensures that increasing a reserve price will not increase payments
unless bidders subsequently raise their bids.

The auction also easily generalizes to more complicated bidding languages. Whereas the
welfare and revenue performance of GSP degrades (albeit gracefully) [83] when considering
externalities imposed by the presence of competing ads, the reasonable (CEF) equilibria of
the utility-target auction guarantee good performance. For example, in Chapter 3 we study
“coopetitive” ad auctions where multiple bidders can benefit from clicks on the same ad (e.g.
Microsoft and Samsung both benefit from an ad for a Samsung laptop running Windows) —
the utility-target auction is necessary to extend these results to settings with multiple slots.
The utility-target auction is also less sensitive to estimation errors in the CTRs. As shown
in [91], incentive-compatibility can be broken because the auctioneer only knows estimates
of the α and β parameters. Informally, the utility-target auction is much less sensitive to
such errors because the payments need not explicitly depend on the auctioneer’s estimates.

Utility-Target vs. GFP

Juxtaposing GFP with the utility-target auction illustrates the benefits of a more complex
bidding language. GFP is identical to the utility-target ad auction except that bids contain
only the per-click payment xi and not the utility-target bid πi. Consequently, a player’s bid
necessarily offers the same per-click payment regardless of the slot won by the bidder. By
comparison, the utility-target auction permits bids that encode a different per-click payment
depending on the slot in which an ad is shown.

In retrospect, it is easy to see that different per-click bids are important for a good pure-
strategy equilibrium. In GFP, all advertisers who are shown must bid so that βixi is the
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ALGORITHM 3: Autility-target auction for search advertising.

input : Bids bi = (xi, πi).
output: An assignment of advertisements to slots, per-click payments ppci, and

unconditional payments ri.

1 For each bidder i and slot j, compute E[pi,j] = max(αjβixi − πi, 0);
2 Compute assignment j(i) of advertisements to slots that maximizes

∑
i∈[n] E[pi,j(i)];

3 if E[pi,j(i)] > 0 then
Always pay i the rebate ri = πi;
Whenever i’s ad is clicked, charge ppci = xi;

else
Do not charge/pay anything to i;

same, otherwise some bidder can lower her value of xi without changing her assignment;
however, if this is true, then some bidder can move up to the top slot by bidding xi + ε. In
fact, any bidding language that requires the same per-click payment for all slots could not
have a pure-strategy equilibrium unless the potential benefit of being in the top slot was less
than the effective bid increment required to get there. This necessarily weakens any revenue
guarantees and, worse, implies that the auction cannot differentiate between the winning
bidders to pick the best ordering of ads.

As noted earlier, the existence of a pure-strategy equilibrium is directly related to the
dynamic performance of the auction. Edelman and Ostrovsky [28] discuss how the lack of
such an equilibrium naturally leads to sawtooth cycling behavior in GFP, as bidders alternate
between increasing their bids to compete for higher slots and decreasing their bids to avoid
overpaying for the slots they have. They also show that this cyclic behavior potentially
reduced revenue below that of the VCG mechanism. In contrast, Theorem 2 shows that
utility-target auctions have pure-strategy equilibria, and Theorem 3 shows that revenue at
equilibrium dominates the VCG mechanism; moreover, our dynamic results show that bids
will naturally approach this equilibrium (or the set of such equilibria) as bidders adjust their
utility targets.

2.6 Dynamic Analysis

In this section, we consider the behavior of utility-target auctions in a very simple dynamic
setting, and under very simple assumptions. We show that a few rules and simple knowledge
of whether one is winning or losing are enough to guarantee the revenue and welfare bounds
from Theorem 3.

Following Lemma 1, we assume that bidders are quasi-truthful and report bids of the
form (vi, πi). Bidders compete using the utility-target terms πi and employ strategies to
optimize their utility.
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Winners and Losers. Our dynamic axioms are based on a natural decomposition of
bidders into winners and losers. In a standard first-price auction, the winner is the bidder
who gets what he wants — the item — and the losers are those who do not get what they
want. In a utility-target auction, a bidder effectively reports her valuation vi and requests
that the auctioneer give her a certain utility πi. This suggests partitioning bidders into
winners and losers based on whether a bidder gets the utility she requests, giving us the
following formal definition:

Definition 5 (Winners and Losers) A winner is a bidder who gets the utility she re-
quests, i.e. if ob is the outcome of the auction, then i is a winner if and only if

ui(o
b) = vi(o

b)− bi(ob) = πi .

Any bidder who is not a winner is a loser.

Observation 2 Bidder i is a winner if and only if vi(o
b) ≥ πi and is always a winner when

πi = 0. When bidder i is a loser, ui(o
b) < πi.

Note that this definition does not coincide with the standard definition of winners and losers
in a single item auction because a bidder who does not get the item is still a winner if πi = 0.

Raising and Lowering Bids. In a dynamic setting, we want to think about how winners
and losers manipulate πi. In the utility-target auction, the effective bid bi (what bidder i is
actually offering to pay) and the utility-target term πi move in opposite directions, so when
we talk about raising i’s bid we are talking about decreasing the utility-target term πi:

Definition 6 (Raising and Lowering Bids) We say that bidder i raises her bid from
(vi, πi) if she chooses a new bid (vi, π

′
i) where π′i < πi, i.e. she raises her bid if she decreases

her utility-target bid.
Similarly, a bidder who lowers her bid correspondingly increases her utility-target bid

from πi to π′i > πi.

Importantly, our definition of winners and losers shares a natural property with the standard
definition: winners cannot benefit by offering to pay more, and losers cannot benefit by
offering to pay less:

Claim 4 Fixing other players’ bids, a loser cannot increase her utility by raising her bid.
Likewise, a winner cannot increase her utility by lowering her bid.

The claim is straightforward to prove.
Our definition of winners and losers also has a new property that is important:

Claim 5 A loser can always raise her bid in a way that weakly increases her utility.



CHAPTER 2. DYNAMIC AXIOMS AND FIRST-PRICE AUCTIONS 24

Proof: Suppose i is a loser bidding (vi, πi) and receiving utility ui < pi. If she raises her bid
to (vi, ui), Lemma 1 says that she will receive utility of precisely ui, making her a winner.

In our model, bidders locally adjust their bids by ε. To mimic settings where auctions
happen frequently and no two bidders move simultaneously, bid changes are modeled as
asynchronous events. As noted earlier, our model assumes players bid quasi-truthfully, that
is, they always submit their true valuation functions in their bids. As a result, the history
of the auction is characterized by a sequence of utility-target vectors π0, . . . .

We assume that 0 ≤ info vi(o) and sup vi(o) <∞, so utility-targets will always lie in the
finite interval [0, sup vi(o)]. Unless a player’s utility-target hits the boundary of this interval,
all bid changes are made in increments of ε.

Notions of Convergence. We will show that progressively stronger assumptions imply
progressively stronger convergence guarantees. Our first results show that bids will eventually
be close to the set of CEF (or non-CEF) bids. As noted earlier, the utility-targets π are
sufficient to characterize bidders’ strategies, so we define C to be the set of all such utility-
target:

Definition 7 (The CEF Set) C is the set of all utility-target vectors π where the quasi-
truthful bids (vi, πi) produce a cooperatively envy-free outcome.4

The set C is the set of all utility-target vectors which are not CEF, i.e. C = Rn
+ \ C.

Significantly, C is never empty. In particular, it always contains the 0 vector (0n ∈ C).
Since bidders are continually experimenting with their bids, it is not realistic to expect

bids to explicitly converge to C; rather, they will remain close. For a set of bids π, let πε
denote the set of bids that are close to some vector in π, i.e.

Definition 8 Let Sε be the set of all utility-targets π which are close to some vector in π
coordinate-wise. Formally,

Sε = {π | ∃π′ ∈ S s.t. ||π − π′||∞ ≤ ε} .

In particular, we will care about the sets Cε and Cε, the sets representing bids close to being
CEF and close to being not CEF, respectively.

Next we define the convergence of an auction to utility-target bids π:

Definition 9 An auction converges to a set of utility-targets S if, for any δ > 0, there
exists a sufficiently small bid adjustment parameter ε for which the auction always reaches a
utility-target π such that all future bids are in Sδ.

4Note that membership in C depends on both the vector π and the outcome chosen by the auction. This
is because certain utility-target vectors π will be in C if ties are broken in favor of o∗ but not if ties are
broken in favor of a suboptimal outcome.
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Our strongest result wull show that bids converge to the egalitarian equilibrium:

Definition 10 The egalitarian equilibrium is the CEF equilibrium which distributes utility
as evenly as possible. Formally, for each equilibrium let u↑ be the vector of bidders’ utilities
with its coordinates sorted in increasing order. The egalitarian equilibrium is the one for
which u↑ is lexicographically maximized.

An auction converges to the egalitarian equilibrium πE if it converges to {πE}.

Axioms and Results

Our convergence theorems show that progressively stronger assumptions about bidder be-
havior lead to progressively stronger convergence results.

Our first axiom of bidder behavior captures some intuition about how winners and losers
behave. Following Claim 4, a winner cannot benefit by raising her bid and a loser cannot
benefit by lowering it, so we suppose that they never do this. Additionally, a loser who is
actively engaged in the auction should raise her bid if it is beneficial. By Claim 5 we know
that a loser can always raise her bid in a way that is weakly beneficial, so we suppose that
a loser will always try to raise her bid.

(A1). A losing bidder will raise her bid in an effort to win; a loser will not lower her bid
and a winner will not raise her bid. Formally, if the current utility-target is π and i
is a loser, then i must raise her bid at some point in the future unless she becomes a
winner through the actions of other bidders.

Anecdotal evidence suggests that advertisers bidding in an ad auction generally expend
substantial effort to launch advertising campaigns but are much slower to change things once
they appear to work. Our second axiom generalizes this idea by supposing that winners (who,
by definition, get the utility-target they request) view the outcome of the auction as a success
while losers are unhappy with the results:

(A2). A bidder who is losing is more impatient than a bidder who is winning. Formally, if
the current utility-target is π and a set of bidders L ⊆ [n] are losers, then the next
time bids change it will necessarily be because some loser i ∈ L raised her bid.

Our third axiom is analogous to (A1) but for winners — a winner who is actively engaged
should lower her bid from time to time to see if she can win at a lower bid.

(A3). A winner will try lowering her effective bid to win at a lower price. Specifically, if a
bidder is currently a winner, then she must lower her bid at some point in the future
unless she becomes a loser through the action of another player. Formally, if the current
utility-targets are π and i is a winner, then i must lower her bid at some point in the
future unless she becomes a loser through the actions of other bidders.
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Our final axiom concerns the relative timing of events. Intuition and anecdotal evidence
suggests that larger bidders who have more at stake tend to invest more heavily in active
bidding strategies. This axiom roughly represents that intuition:

(A4). Between two losers, the bidder with the higher utility-target is more impatient. For-
mally, if the current utility-targets are π and bidders i and j are both losers, then i
will raise her bid before j if πi > πj.

These simple properties of bidder behavior imply the following convergence results.
Proofs follow in Section 2.6 and Appendix A.1.

Theorem 4 If losing bidders will only raise their effective bids (A1) and are more impatient
than winning bidders (A2), the auction converges to the set of bids that are cooperatively
envy-free (i.e. bids will be in Cε).

Theorem 5 If winners try to lower their effective bids (A3) and losers try to raise but
not lower their effective bids (A1), the auction converges to the set of bids that are non-
cooperatively envy-free (i.e. bids will be in Cε).

Combining Theorems 4 and 5 shows that bids will converge to the frontier of the CEF
set. The strict Pareto frontier of this set is the set of CEF equilibrium bids.

Corollary 6 If losing bidders will try raising their bids (A1), losers are less patient than
winners (A2), and winners try lowering their bids (A3), the auction converges to the bound-
ary between CEF and non-CEF bids (bids will be in the set Cε ∪ Cε).

Finally, adding A4 induces convergence to a particular equilibrium:

Theorem 7 If losing bidders will raise their effective bids (A1), winning bidders will try
lowering their effective bids (A3), and the most impatient bidder is the losing bidder bidding
for the highest utility-target (A2, A4), then bids will converge to the Egalitarian envy-free
equilibrium.

Convergence Proofs

In this section we give proofs of Theorems 4 and 5. Theorem 7 is sketched, and a full proof
may be found in Appendix A.1. Throughout this section, we assume that there is a single
welfare optimal outcome for clarity of presentation.

Observation 3 Under assumptions A1 and A2, a bidder will only lower her bid if all bidders
are winners.

Lemma 8 If all bidders are winners under utility-targets π, then π is in the CEF set C.
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Proof: If all bidders are winners, then we know that they are receiving precisely the utility-
target they request when they bid π. Intuitively, this means that raising bids necessarily
implies receiving less utility.

Formally, if bids are bi = (vi, πi) and the outcome of the auction is ob, then we want to
show that the CEF condition holds for any outcome o. Since all bidders are winners, we know
vi(o

b)−bi(ob) = πi. Moreover, vi(o)−bi(o) ≤ πi by definition, so vi(o)−bi(o) ≤ vi(o
b)−bi(ob).

Thus
max

(
(vi(o)− bi(o))− (vi(o

b)− bi(ob)), 0
)

= 0 .

Since ob is the outcome of the auction, we know
∑

i∈[n] bi(o
b) ≥

∑
i∈[n] bi(o) for any

outcome o. Thus, 0 ≤
∑

i∈[n] bi(o
b)− bi(o) and therefore∑

i∈[n]

max
(
(vi(o)− bi(o))− (vi(o

b)− bi(ob)), 0
)
≤
∑
i∈[n]

bi(o
b)− bi(o)

as desired.

Since A1 and A2 imply that a player will only lower her bid from π if all bidders are
winners, an important corollary is that a bidder will only lower her bid if the current utility-
target vector is in the CEF set C:

Corollary 9 Under assumptions A1 and A2, if a player lowers her bid from π, then π is in
the CEF set C.

A corollary of Claim 1 is that any set of CEF bids maximizes welfare, hence this implies
that a player will only lower her bid if the welfare-optimal outcome is winning:

Corollary 10 Under assumptions A1 and A2, a bidder will only lower her bid if a welfare-
optimal outcome o∗ is winning.

Another useful fact about C is that it is leftward-closed (the proof is in the appendix)
and the natural corollary that C is rightward-closed:

Lemma 11 If π is in the CEF set C, then π −∆ is in the CEF set C for any π ≥ ∆ ≥ 0.

Corollary 12 If π is in the not-CEF set C, then π + ∆ is in the not-CEF set C for ∆ ≥ 0.

Proof of Lemma 11. Let b be the bids at π and bδ be the bids at π − δ. Note that Claim 1
implies a welfare-optimal outcome o∗ is winning at π.
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First, suppose that all bidders for whom δi > 0 are winners at π. In this case, vi(o
∗) ≥ πi

and so vi(o
∗) ≥ πi − δi and for any outcome o we get∑

i∈[n]

bδi (o
∗) =

∑
i∈[n]

bi(o
∗) + δi

≥
∑
i∈[n]

bi(o) + δi

≥
∑
i∈[n]

bδi (o) ,

implying o∗ is still winning at bδi . Since vi(o
∗) ≥ πi− δi, we can conclude that all bidders are

winners, ergo π − δ ∈ C by Lemma 8.
Now, suppose some bidders in π may be losers, but that the vector δ has the following

property:
δi ≤ max(πi − vi(o∗), 0) .

This condition says that only losers will raise their bids, and they will not raise them enough
to affect bi(o

∗).
Our goal is to show∑

i∈[n]

bδi (o
∗)− bδi (o) ≥

∑
i∈[n]

max
(
(vi(o)− bδi (o))− (vi(o

∗)− bδi (o∗)), 0
)
.

First, we see that bδi (o) = bi(o) as long as vi(o) ≤ vi(o
∗). For any bidder i we have

bδi (o) = max(vi(o)− πi − δi, 0)

which can only be nonzero if vi(o) > πi. However, bi(o) can only change if δi > 0, which
requires πi > vi(o

∗) and thus vi(o) > πi > vi(o
∗). By construction, this also holds for πi− δi:

vi(o) > πi − δi ≥ vi(o
∗) .

Now, when vi(o) > πi − δi ≥ vi(o
∗), we have

(vi(o)− bδi (o))− (vi(o
∗)− bδi (o∗)) = min(vi(o), πi − δi)−min(vi(o

∗), πi − δi)
= πi − δi − vi(o∗)
≥ 0 .

Importantly, if ∆(o) is the set of bidders for which bδi (o) 6= bi(o), we may conclude that∑
i∈[n]

max
(
(vi(o)− bδi (o))− (vi(o

∗)− bδi (o∗)), 0
)

=
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=
∑
i 6∈∆(o)

max
(
(vi(o)− bδi (o))− (vi(o

∗)− bδi (o∗)), 0
)

+
∑
i∈∆(o)

(vi(o)− bδi (o))− (vi(o
∗)− bδi (o∗))

and likewise ∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) =

=
∑
i 6∈∆(o)

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0)

+
∑
i∈∆(o)

(vi(o)− bi(o))− (vi(o
∗)− bi(o∗)) .

The desired CEF condition quickly follows, using the fact that bidders i 6∈ ∆(o) did not
change their bids: ∑

i∈[n]

max
(
(vi(o)− bδi (o))− (vi(o

∗)− bδi (o∗)), 0
)

=

=
∑
i 6∈∆(o)

max
(
(vi(o)− bδi (o))− (vi(o

∗)− bδi (o∗)), 0
)

+
∑
i∈∆(o)

(vi(o)− bδi (o))− (vi(o
∗)− bδi (o∗))

=
∑
i 6∈∆(o)

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) +

∑
i∈∆(o)

(vi(o)− bi(o))− (vi(o
∗)− bi(o∗))

+
∑
i∈∆(o)

(bi(o)− bδi (o))− (bi(o
∗)− bδi (o∗))

=
∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) +

∑
i∈[n]

(bi(o)− bδi (o))− (bi(o
∗)− bδi (o∗))

≤
∑
i∈[n]

(bi(o
∗)− bi(o) +

∑
i∈[n]

(bi(o)− bδi (o))− (bi(o
∗)− bδi (o∗))

=
∑
i∈[n]

bδi (o
∗)− bδi (o)

as desired.
Finally, for general δ, split it as δ = δ1 + δ2 where

δ1
i = min(δi, πi − vi(o∗)) .
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The vector δ1 satisfies the condition δi ≤ max(πi − vi(o∗), 0), so π − δ1 ∈ C. Moreover, all
bidders are winners in π − δ1, so

s− δ1 − δ2 = s− δ ∈ C

as desired.

To prove that bids will converge, we first show that bids will not be stuck at arbitrarily
low values:

Lemma 13 Suppose the initial vector of utility-targets is π0. Under properties A1 and A2,
the auction will always reach a configuration in which all bidders are winners and will do so
within

∣∣⌈1
ε
π0
⌉∣∣

1
steps.

Proof: Properties A1 and A3 imply that a bid will only be lowered if there are no losers.
Thus, bids will only be raised (utility-targets decreased) until all bidders are simultaneously
winners. Since any bidder i is always a winner when bidding πi = 0 and bidders never
decrease their utility-targets when they are winners (A1), utility-target can be decreased at
most

∣∣⌈1
ε
s
⌉∣∣

1
times before all bidders are winners. Moreover, since losers will always try to

decrease their utility-targets (A1), the auction will never stall in a configuration where some
bidder is a loser.

We can now prove the our first theorem, that bids will be close to C when A1 and A2
are satisfied.
Proof of Theorem 4. Lemma 13 implies that all bidders will be winners within a finite time.
Once all bidders are winners, the only way bids will change is if someone lowers her bid.
Thus, after a finite amount of time, we can conclude that either all bidders are winners or
some bidder has lowered her bid.

Let π be the vector of utility-targets at any point after the first time all bidders are
winners. If all bidders are still winners, then π ∈ C by Lemma 8. Otherwise, let i be the most
recent player to lower her bid, increasing the utility-target vector from π′ to π′′ = π′+εei. We
show that if i raises her bid again then the resulting utility-targets must be CEF regardless
of how bids have changed since i’s raise.

By construction, players have only raised their bids since i lowered hers, so we can define
∆ = π′′ − π where ∆ ≥ 0. Corollary 9 tells us that π′ ∈ C. If i raised her bid between π′′

and π, then π ≤ π′ and Lemma 11 tells us that π ∈ C, so were done. Otherwise, we know
π′′ ≥ ∆ ≥ 0 and Lemma 11 tell us that π′ −∆ ∈ C. Therefore π = π′ −∆ + εej ∈ Cε.

To prove Theorem 5, we need a lemma similar to Lemma 13 showing that the auction
will reach a bid vector that is CEF:

Lemma 14 Under properties A1 and A3, as long as there is some outcome o and bidder j
such that vj(o) > vj(o

∗), the auction will always reach a configuration that is not CEF when
ε is sufficiently small. If there is no such outcome o and bidder j, then the auction may
converge to πj = vj(o

∗) instead.
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Proof: If the auction reaches a vector π that induces an outcome o 6= o∗, then π ∈ C and
we are done. Thus, it remains to show that an auction will reach a vector π ∈ C even if the
outcome is always o∗.

Consider a bidder j. By A1 we know that j will only decrease πj if she is a loser and
increase πj if she is a winner. By A3 we can conclude that j will eventually decrease her bid
until πj ≥ vj(o

∗)− ε, implying bj(o
∗) ≤ ε. Thus,∑

i∈[n]

bi(o
∗)− bi(o) ≤ nε .

Now, as long as there is some outcome o and bidder j such that vj(o) > vj(o
∗), when ε is

sufficiently small it will be the case that

nε <
∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0)

Unfortunately, this implies∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) >

∑
i∈[n]

bi(o
∗)− bi(o) ,

and therefore π ∈ C.
If there is no outcome o and bidder j such that vj(o) > vj(o

∗), then by similar logic bidders
will increase their utility-targets until precisely πj = vj(o

∗) (as a result of our restriction that
bidders always bid πj ≤ supo vj(o

∗)).

Proof of Theorem 5. By Lemma 14, the auction will eventually reach a utility-target vector
in C or the degenerate case where nobody is paying anything and o∗ is winning. In the
degenerate case, bids converge to a point on the boundary of C, so the theorem is true. For
the standard case, we show that π ∈ Cε from the first time a bid in C is reached.

If π ∈ C, we are done, so suppose π ∈ C. Let π′ be the most recent utility-targets that
were in C and let π′′ ∈ C be the utility-targets immediately after π′. Let i be the bidder who
changed her bid between π′ and π′′. Corollary 12 implies that i must have raised her bid
between π′ and π′′.

First, suppose that the outcome changed from o′ to o′′ when i raised her bid. Since o∗

must be the outcome of any CEF bid, we know that o′′ = o∗ and that the outcome does not
change again before bids reach π. Define the utility-target vector π̃ with associated bids b̃
as follows:

π̃j =


min(πi, π

′
i) j = i

πj − ε πj > π′′j
πj + ε πj < π′j
πj otherwise.
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Let δj = π̃j − π′′j . We argue later that i will not increase her utility-target from π′′i = π′i + ε,

so |π̃j − πj| ≤ ε for all j. Thus, it is sufficient to show that π̃ ∈ C.
Consider a bidder j 6= i and suppose πj > π′′j . By definition, we get a simple bound on

j’s bid for o′:
b̃j(o

′) ≥ b′j(o
′)− δj .

We also know that j lowered her bid at some point between π′′ and π. Since j would only
increase her utility-target if she were a winner, she must have been a winner at some value
≥ πj − ε = π̃j. Thus, π̃j = πj − ε ≤ vj(o

∗). We can thus upper-bound her bid for o∗:

b̃j(o
∗) ≤ b′j(o

∗)− δj .

Combining these two bounds and noting that b′′j = b′j for j 6= i gives

b̃j(o
′)− b̃j(o∗) ≥ b′j(o

′)− b′j(o∗) .

For bidders j 6= i with πj < π′′j , analogous reasoning based the fact that j must have
been a loser to decrease her utility-target gives

b̃j(o
′)− b̃j(o∗) ≥ b′j(o

′)− b′j(o∗) .

For bidders j 6= i with πj = π′′j , we trivially have

b̃j(o
′)− b̃j(o∗) = b′j(o

′)− b′j(o∗) ,

so it remains to consider bidder i.
For bidder i, we know that decreasing her utility-target from π′i to π′′i increased her bid

for o∗ more than it increased her bid for o′. This implies vi(o
′) < vi(o

∗) and π′′i < vi(o∗).
Consequently, i is a winner with π′′i at o∗ and will not decrease her utility-target further.
Firstly, this implies that |π̃i − πi| ≤ ε. First, suppose πi > π′′i . In this case, πi ≥ π′i, and
since vi(o

∗) > vi(o
′) we have

b̃i(o
′)− b̃i(o∗) ≥ b′i(o

′)− b′i(o∗) .

Otherwise, i does not change her bid from π′′ to π, so π̃i = π′i and therefore b̃i = b′i
Thus, for any bidder j we have

b̃j(o
′)− b̃j(o∗) ≥ b′j(o

′)− b′j(o∗) ,

and thus ∑
j∈[n]

b̃j(o
′)−

∑
j∈[n]

b̃j(o
∗) ≥

∑
j∈[n]

b′j(o
′)−

∑
j∈[n]

b′j(o
∗) .

Since o′ was winning at b′j, this implies o∗ cannot be winning under π̃, and therefore π̃ ∈ C.
By construction, |π̃j − πj| ≤ ε, so this implies π ∈ Cε.
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So far, we showed that π ∈ Cε as long as the outcome changed when i raised her bid. In
the case where the outcome was already o′ = o∗, we want to analyze the CEF constraints
directly. Since π′ ∈ C, there is some outcome ow for which the CEF constraints are violated,
i.e. ∑

i∈[n]

b′i(o
∗)− b′i(ow) <

∑
i∈[n]

max ((vi(o
w)− b′i(ow))− (vi(o

∗)− b′i(o∗)), 0) .

Observing that the outcome does not change from π′ to π, the logic from the case where
o′ 6= o∗ gives

b̃j(o
′)− b̃j(o∗) ≥ b′j(o

′)− b′j(o∗)

for any bidder j. It immediately follows that∑
i∈[n]

b̃i(o
∗)− b̃i(ow) <

∑
i∈[n]

max
(

(vi(o
w)− b̃i(ow))− (vi(o

∗)− b̃i(o∗)), 0
)
,

and so π̃ ∈ C and π ∈ Cε.

We have now shown that when losing bidders raise their effective bids and winning
bidders lower their effective bids, bids remain close to the frontier of the CEF set C. Adding
in the specific behavior that the first player to raise their bid will be the losing bidder with
the highest utility-target results in convergence to one specific equilibrium: the egalitarian
equilibrium (Theorem 7). The full proof is included in the appendix; we provide a sketch of
it here.
Proof Sketch of Theorem 7:

Arrange bidders into levels L1, . . . , Lk in increasing order of the utility each bidder gets
at the egalitarian equilibrium.

For each level Li+1, bids from all bidders in the level will converge close to the egalitarian
equilibrium once the bids of lower level bidders are sufficiently close to their egalitarian bids.

Thus, beginning with the bidders who get the least utility in equilibrium, and working
on up to the lucky bidders with the most utility, bids will converge close to the egalitarian
outcome.

2.7 Conclusion and Open Questions

Pay-your-bid auctions — and utility-target auctions in particular — offer many advantages
over incentive compatible mechanisms in terms of transparency and simplicity. Moreover, in
many complex settings they even appear to generate more revenue.

Our work first shows that the bidding language is important in first-price auction design.
In particular, it is both important and sufficient that bidders can compete in terms of their
final utility. Also, a key feature in a repeated first-price auction is a pure-strategy equilibrium,
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something that GFP does not have [29]. This is a question of design: the existence of pure-
strategy equilibria may be guaranteed through a carefully crafted bidding language (e.g. the
utility-target auction) that can encode different per-click payments for different ad slots.

More significantly, when players compete on utility, our results show that robust perfor-
mance guarantees may be derived using only simple axioms of bidder behavior that merely
require knowledge of whether one is winning or losing. These results are powerful because
they do not require an a priori assumption that the auction is in equilibrium or full infor-
mation about others’ bids.

Yet, reflection raises a concern about utility-target auctions: why should bidders reveal
their true valuation functions in a repeated auction? We claimed that first-price auctions
were better because the auctioneer could not cheat, but it would seem that quasi-truthfulness
is just as dangerous. In fact, a quasi-truthful pay-your-bid auction is still strongly preferable
to a standard second-price auction: even if the auctioneer knows a bidder’s true valuation
function, it cannot immediately increase the amount of money the bidder pays. By compar-
ison, the auctioneer in a second-price auction might force a bidder to pay her full value in
the second round by increasing the reserve price. The auctioneer is welcome to engage in a
game of chicken or a “negotiation” with the bidder to see if she is willing to raise her bid,
but the pay-your-bid property ensures that final approval still rests with the bidder.

In practice, systems may also be designed to encourage competition on the utility-target
term and thereby recover stability. For example, Overture exacerbated the instability of the
GFP auction by offering an API automating the sawtooth behavior. If an API were offered
to compete on the utility-target term, bidders would likely use the API and stability would
be restored, regardless of whether they were reporting their true valuation functions.

Issues of quasi-truthfulness aside, our work also raises questions about dynamic axioms
of bidder behavior. Our axioms may be simple and natural, but strict adherence to them is
clearly unrealistic. In this vein, many interesting questions are open:

1. How does the behavior of the auction change with small modifications to the axioms?
For example, we showed that bids would converge to the egalitarian equilibrium when
the bidder with the most to gain raised first. Can we prove convergence to a different
equilibrium by modifying players’ delays?

2. Do the performance guarantees still hold if axioms only hold probabilistically or on
average? It seems unlikely that bidder behavior always satisfies any particular set of
axioms. How do the dynamic guarantees change when axioms only hold most of the
time?

3. What dynamic axioms do bidders actually obey? An interesting experimental question
is to determine what axioms are actually satisfied by bidder behavior. For example,
could one experimentally measure bidders’ delays and combine this with an answer to
(1) to predict a particular equilibrium outcome?
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Chapter 3

Coopetitive Ad Auctions

A single advertisement often benefits many parties, for example, an ad for a Samsung laptop
benefits Microsoft. In this chapter, we study this phenomenon in search advertising auctions
and show that standard solutions, including the status quo ignorance of mutual benefit and a
benefit-aware Vickrey-Clarke-Groves mechanism, perform poorly. In contrast, we show that
a first-price auction (using the utility-target auction of Chapter 2 for mulit-slot settings)
has well-behaved equilibria in a single-slot ad auction: all equilibria that satisfy a natural
cooperative envy-freeness condition select the welfare-maximizing ad and satisfy an intuitive
lower-bound on revenue.

3.1 Introduction

In 1991, Intel launched its “Intel Inside” advertising campaign and forever changed the way
people buy computers. Previously, buyers only considered hardware insofar as it affected
the software that would run on their new machine. The “Intel Inside” campaign aimed
to change that behavior — Intel coordinated with PC vendors to advertise not just the
processor’s capabilities but the Intel brand. Twenty years later, the “Intel Inside” mark has
become one of the most recognized in the tech industry, their signature five-note chime is
known worldwide, and, most importantly, buyers think about the brand of processor inside
their computers [49].

Intel’s benefit from the “Intel Inside” campaign is an obvious example of a general phe-
nomenon. Intel clearly has a vested interest in the sale of computers containing its products
and, in an amortized sense, derives a specific benefit from every sale. This exemplifies a
fundamental aspect of marketing: a single advertisement often benefits many different com-
panies. Companies commonly recognize this benefit and team up with partners in so-called
cooperative advertising agreements similar to the “Intel Inside” campaign — in 2000, an
estimated $15 billion was spent on cooperative advertising in the United States alone [72].
This phenomenon is also recognized in the operations research and marketing fields where it
has been modeled using a variety of Stackelberg and dynamic games [13, 41]. However, one



CHAPTER 3. COOPETITIVE AD AUCTIONS 36

key question seems to have gone unasked in both the practical and theoretical realms: how
can the companies who sell advertising space exploit the broad benefit of a single ad? We
study this question in the context of online ad auctions.

Our main results show that an auctioneer may improve both his own revenue and con-
sumers’ welfare by using an auction that allows and encourages cooperation among the
advertisers bidding on a single ad but maintains competition between ads — we call this a
coopetitive1 ad auction. We first show that conventional cooperative advertising contracts
and the Vickrey-Clarke-Groves (VCG) mechanism may perform poorly — Figure 3.1 shows
a real query in which Google’s current ad auction produces an unreasonable and unsustain-
able outcome. In contrast, we show that equilibria of the first-price auction which satisfy a
cooperative envy-freeness condition have a natural performance guarantee similar to that of
a second-price auction.

Figure 3.1: A Google search for “samsung intel laptop” illustrates the pitfalls of ignoring
the mutual benefits of an ad — the top ad for “Intel Laptops” is competing against the ad
below it for “Samsung...w/ Intel.” Google is charging Intel a premium to show its ad on top;
however, Intel should be happy if a user clicks on the Samsung ad (and possibly even the
Newegg ad) and thus should be unwilling to pay this premium. Even worse, the inclusion of
“w/ Intel” in Samsung’s ad suggests that it is subsidized by Intel through the Intel Inside
program, further driving up the price of the top slot.

Mutual Benefit and Cooperative Advertising. Most advertisements (directly or in-
directly) benefit many parties. For example, an iPhone ad benefits cell phone providers, a
Samsung ad for a Windows laptop benefits Microsoft, and an ad for the Boston Red Sox

1Coopetition is a business term describing an environment where the same parties are simultaneously
cooperating in some areas and competing in others [89].
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benefits a bar across the street from Fenway Park. Moreover, these secondary benefits are of-
ten significant — when Best Buy sells a Samsung laptop running Windows, Microsoft makes
more money from the laptop’s sale than either Best Buy or Samsung. As a result, compa-
nies have strong incentives to share advertising costs, particularly when competing against
a more integrated adversary as when Microsoft and Samsung compete against Apple.

The status quo technique for pooling advertising dollars is an ad-hoc system of external
contracts. In such external contracts, one company agrees to pay a portion of another’s
advertising costs when its branding is included in the ads. In the Intel example, Intel agrees
to pay a percentage of the advertising costs when Samsung or Dell include the “Intel Inside”
branding in their ad.

In the research community, cooperative advertising has mostly been studied in marketing
and operations research. The setting is typically modeled as a Stackelberg game in which
an upstream manufacturer makes an offer to downstream manufacturers or retailers [13,
55], sometimes incorporating dynamic components [41]. Other recent research has relaxed
the assumption that the upstream manufacturer is the first mover and considers external
contracts based on alternative bargaining solutions [47].

Pay-Per-Click Ad Auctions. Search advertising today is sold through a pay-per-click
(PPC) ad auction. In the standard setting, each bidder comes to the auction with its
own ad and places a bid in terms of its willingness to pay for each click. The auctioneer
subsequently assigns ads to slots on the web page — bidders effectively compete for slots —
but only charges a bidder when his ad is clicked.

In a standard PPC ad auction, the only way for advertisers to share costs is through
external contracts. Unfortunately, this creates undesirable results in an auction format.
First, a manufacturer may compete with itself. For example, Figure 3.1 shows a Google
query for “samsung intel laptop” in which an ad from Intel is shown above a Samsung ad
that explicitly advertises Intel-based laptops. In general, Intel will be happy if the buyer
visits Samsung’s site with the intent to buy an Intel-based laptop. Thus, even if Intel would
prefer the user to click on its own ad instead of Samsung’s, Intel should be unhappy paying
the premium required to beat Samsung in the auction. Even worse, Intel may be subsidizing
Samsung’s ad, further increasing the price Intel pays in a GSP auction.

A second downside to external cooperative advertising agreements is that downstream
producers may face a moral hazard. In some situations, the downstream producer may be
incentivised to overspend on advertising and waste the upstream manufacturer’s money. In
the worst case, the upstream manufacturer will refuse to participate and cooperation will
collapse entirely. We give examples of both phenomena in Section 3.3.

The theory of mechanism design suggests another approach: bids should express complex
preferences over ads. In particular, as it is possible for multiple bidders to value a single
ad and for a single bidder to value multiple ads, bidders should be able to express these
preferences. This however is not enough to guarantee good behavior: we show in Section 3.3
that a Vickrey-Clarke-Groves (VCG) auction may generate little or no revenue — the implicit
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cooperation among advertisers (which is desired) mimics the kind of strategic collusion that
is known to reduce revenue in VCG mechanisms.

The First-Price Coopetitive Ad Auction. In contrast to the pitfalls of external con-
tracts and VCG mechanisms, we use techniques from Chapter 2 to show that a first-price
auction that consider bidders’ complex preferences will have nice equilibria. (We focus on
the special case of a single-slot ad auction in this chapter.) First, we generalize the intuition
of a second-price auction to give a natural lower-bound on the revenue that the auctioneer
should expect. Second, analogous to the results of Edelman et al. [29] for the commonly
used generalized second-price (GSP) auction, we show that all equilibria satisfying a natural
cooperative envy-freeness condition maximize welfare while satisfying this revenue lower-
bound. We also show that the cooperative envy-free equilibria dominate VCG in terms of
revenue — each bidder is individually paying more in the first-price auction than in the VCG
mechanism.

Next, we show that such cooperative envy-free equilibria can be found easily. The envy-
freeness constraints define a polytope of which the equilibria form the Pareto frontier, sug-
gesting a family of convex programs for computing equilibria. Finally, we specifically identify
the egalitarian equilibrium and give an efficient algorithm for computing it.

As discussed in Chapter 2, first-price auctions are often preferable to VCG and GSP
auctions. Most singificantly, they are more transparent — since prices precisely correspond
to bids, bidders do not face uncertainty in their payments and there is no opportunity for
the auctioneer to manipulate the auction, particularly by learning in a repeated setting. For
example, eBay historically offered a VCG-like auction for selling multiple identical items.
The auction was sufficiently disliked by the bidders that eBay no longer offers it as an
option. Today, eBay sells single items through a transparent ascending price auction. In
the specific case of ad auctions, Overture’s experience has discredited the first-price auction;
however, our work in Chapter 2 showed how Overture’s auction might have been fixed.

Related Work. In addition to the afore-mentioned work on cooperative advertising and
online ad auctions, our work is related to auctions with externalities. Whereas simple auction
models assume players are indifferent to the bundle received by another player, in reality
there may be externalities, i.e. players may care about the bundles received by other agents.
Incorporating externalities has been studied in both the economics and computer science
literatures (e.g. [61, 53]), typically producing a mechanism in which bidders can express
a different value for every possible outcome. Our ad auctions may not always have nice
interpretations in terms of these externalities; however, like mechanisms with externalities
they cannot be expressed in the standard bidding language and, in the extreme, degenerate
to a mechanism which requires bidders to express a value for every possible outcome.
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3.2 The Coopetitive Ad Auction

The coopetitive advertising model generalizes the standard pay-per-click (PPC) advertising
auction. As in the standard auction, the auctioneer must choose which of m competing ads
to show in s slots. Each advertiser derives a value of v from a click on one of its ads and
has a utility that is quasilinear in money, i.e. u(p) = v − p when the advertiser gets a click
and pays p. The likelihood that a user clicks on ad j in slot k, called the click-through-rate
(CTR), is given by cj,k. Hence, the expected utility of bidder whose ad is shown in slot with
CTR c is E[ui(pi)] = c(v − p). In this paper, we focus on the special case with one slot
(s = 1) where CTRs are independent of the ad. In this case, the CTR can be taken to be 1
without loss of generality, so henceforth we ignore them. All the results in this chapter can
be extended to the multi-slot setting using utility-target auctions introduced in Chapter 2.

The new feature of the coopetitive model is that an advertiser can derive value from clicks
on multiple ads. In general, advertiser i’s value for a click vi,j depends on the particular ad
j; however, for the sake of presentation we consider a simpler model. An advertisement
j ∈ {1, . . . ,m} is defined by a publicly-known set of advertisers Sj ⊆ [n] who all derive value
from a click on advertisement j. Advertiser i derives the same value vi from a click on any
ad j where i ∈ Sj (an advertiser does not benefit if i 6∈ Sj). We use T to denote the set of
bidders in the ad with the maximum total value, i.e. T = argmaxSj

∑
i∈Sj vi (in case of a

tie, T denotes the particular winning ad chosen by the auction). All our results generalize
to the more complicated vi,j setting through the utility-target auction, where bids effectively
encode the same utility vi,j − bi,j for each ad.

We will often use shorthand for examples. Our notation is itself best described by an
example:

{(A2, B1, C3), (A2, B1), (C3)}

This denotes an auction with three advertisements and three advertisers (A, B, and C).
Each advertiser derives value when the first ad (A2, B1, C3) is shown, while only advertisers
A and B benefit from the second ad and only advertiser C benefits from the third. In this
example, advertisers are indifferent between the ads they are involved with, with values of
2, 1, and 3 respectively when an ad of theirs is shown.

The External Contracts Mechanism. External contracts are the way advertisers cur-
rently cooperate: each ad is “owned” by a single bidder, and any party wishing to increase
the bid on an ad must negotiate an external contract with the ad’s owner.

We model this as a standard VCG PPC ad auction in which advertiser i can (before the
auction is run) commit to pay an αi fraction of the cost each time one of its ads is clicked,
up to a maximum βi. This payment goes directly to the owner o(j) of the clicked ad j.
Thus, the utility of advertiser i would be ui = vi − min(αipo(i), βi), while the utility of the
ads owner o(j) would be uo(j) = vo(j) − po(j) + min(αipo(j), βi).
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The VCG Mechanism. In our setting with a single slot, the Vickrey-Clarke-Groves
(VCG) mechanism chooses the ad j maximizing

∑
i∈Sj vi and charges bidder i his exter-

nality. When the bidder values all ads the same, this will be the minimum value he needed
to have reported to be in the winning ad. (Bidders submit their true values vi because VCG
is incentive compatible.)

The First-Price Auction. In a first-price auction, each advertiser submits a bid bi. The
auctioneer displays the ad j maximizing

∑
i∈Sj bi and charges each bidder in the winning ad

pi = bi when the ad is clicked.

3.3 Pitfalls of Standard Mechanisms

Many standard mechanisms behave poorly with respect to advertisers coopetitive valuations.
For example, Figure 3.1 shows how Google’s current system caused Intel to compete against
itself. In this section, we will give further examples detailing the poor behavior of the external
contracts mechanism (the status quo) and the Vickrey-Clarke-Groves mechanism.

External Contracts. A few pitfalls specifically arise in the current system of external
contracts. First, if contracts are made with insufficient granularity, an advertiser might
easily compete with itself:

Example 1 Consider the following two single-slot ad auctions:

{(S3,M10), (D2,M10), (A11)} and {(S3,M10), (D2,M10)} .

In the first ad auction, M will happily contribute advertising funds to help beat A; however, in
the second auction M wins regardless. The only effect of M ’s dollars in the second auction is
to fund a useless bidding war between the SM and DM ads, so it should not offer cooperative
advertising contracts to S and D.

Ideally, M would only contribute advertising funds in the first auction. However, since
the granularity of real cooperative advertising contracts is somewhat limited, this example
demonstrates a legitimate concern.

Additionally, the advertiser receiving the external contract faces a moral hazard: he is
often incentivized to overspend the money of his advertising partner. In equilibrium, the
result is that cooperation collapses:

Example 2 Consider the following three ads with four interested parties:

{(S3,M10), (D2,M10), (A11)} .

Suppose there are three ad slots with CTR’s 0.1, 0.08, and 0.05 respectively (if a bidder
appears in multiple ads, their likelihood of a click is the sum of the likelihoods for those ads).
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In the external contracts model described in Section 3.2, M will not offer a cooperative ad-
vertising contract in equilibrium. As a result, the auction degenerates to {(S3), (D2), (A11)}.
Not only will revenue decrease substantially, but the auction will be inefficient because (A11)
wins the top slot.

We omit the calculations.

The VCG Mechanism. The VCG mechanism charges a player based on the externality it
imposes on other users, i.e. the welfare that others lose because of its presence. A downside
of the VCG mechanism is that it may not generate any revenue. It is well-known that
collusion has a negative effect on revenue in the VCG mechanism [7]. While such collusion
can be illegal in other settings, in coopetitive ad auctions we specifically want advertisers to
cooperate on ads that are of mutual benefit — hence we cannot assume that they will not
collude.

For example, two players can make their payments zero by simultaneously claim suffi-
ciently large values for the winning outcome o. If the players’ bids are sufficiently large that
o is still the welfare-maximizing outcome even if one of the pair were removed, the exter-
nality that each player imposes is zero, and nobody pays anything. This happens easily in
coopetitive ad auctions. For example:

Example 3 In the single slot ad auction {(A1, B1, C1, D1), (E2.9)}, the VCG mechanism
will show the first ad in the slot, but nobody pays anything.

In this case, the ABCD ad remains the best ad even if a single bidder is removed. As a
result, nobody pays anything. Such a scenario can occur naturally if the winning ad is valued
by many small bidders.

The weak revenue of the VCG mechanism is not limited to extremes like the above
example. In general, payments will be lower than an auctioneer might hope:

Example 4 In the single slot ad auction {(A2, B2), (E3)}, the VCG mechanism will show
the first ad in the slot and players A and B will each pay 1.

Intuition says that the the auctioneer should hope to make A and B pay a total of 3, since
that is the total bid required to beat E. However, the total VCG payment for the first ad
is only 2. In contrast, we show that a coopetitive first-price auction will indeed generate a
revenue of 3.

3.4 Equilibria of the First-Price Auction

In this section, we show that the equilibria of first-price coopetitive ad auctions have desir-
able revenue and welfare properties. The straightforward results we prove are special-case
adaptations of more general theorems in Chapter 2, where we show how the same properties
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can always be guaranteed when a first-price auction is implemented with an appropriate bid-
ding language. We focus on the single-slot setting to illustrate intuition; however, analogous
results can be shown for multi-slot settings using the utility-target auction framework.

First-price auctions may have many equilibria — we will focus on equilibria that satisfy
cooperative envy-freeness as introduced in Chapter 2. The intuition for expecting an envy-
free outcome in a repeated auction is simple: if a group of losing bidders (bidders who do
not get value from the winning ad) can unilaterally increase their utilities by increasing
their bids, then over time it is reasonable to expect that all bidders in the losing group will
eventually raise their bids appropriately even if they do not explicitly collude.

More formally, cooperatively envy-free equilibria are ones in which cooperating partners
cannot jointly raise their bids to beat out the presently winning ad without overpaying (much
like the core in cooperative game theory). The interpretation of CEF equilibria in this setting
is the following:

Definition 11 The bids (bi)i∈T for the winning ad T are cooperatively envy-free (CEF) if
and only if for all alternate ads Sj, ∑

i∈T\Sj

bi ≥
∑
i∈Sj\T

vi (3.1)

We also insist that the agents bidding are individually rational (IR) and bids are non-
negative, that for each advertiser i, 0 ≤ bi ≤ vi.

Combining IR and CEF yields efficiency - if the bids of agents in T \ Sj are at least the
values of agents in Sj \ T , then so too are the values.

Lemma 15 If the bids (bi)i∈T for the winning ad T are IR and CEF, then T is the efficient
winning ad.

These CEF, IR and non-negativity conditions form a polytope of possible payments
associated with the correct winning ad. Not all of these are equilibria - those will instead
form the Pareto frontier of the polytope. On this frontier, there can still be many possible
equilibria. For instance, consider the following ad auction with three advertisers and three
outcomes: {(A100, B100), (C99)}. Every set of bids bA = x, bB = 99 − x for 0 ≤ x ≤ 99
constitute an equilibrium.

Naturally, the constraints defining this polytope come from other ads — for any bidder
(dimension), there must be an alternative ad that would win if she lowered her bid. We will
use this structural result later.

Lemma 16 The IR, CEF, non-negative bids (bi) form an equilibrium for the winning ad T
if and only if for each bidder k, bk = 0 or there exists an ad Sj 63 k s.t.∑

i∈T

bi =
∑
i∈Sj

bi (3.2)
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Proof: First, the ‘if’ direction. Assume such an Sj exists for every k. Then, were k to lower
his bid, Sj would win and k would no longer be in the winning set.

Consider the other direction. Assume a set of bids equilibrium bids are CEF, IR and
non-negative. For every winning advertiser k, they must not be able to lower their bids and
still win - otherwise they would, and we would not be in equilibrium. Thus, for any k s.t.
bk > 0, there must be such a set Sj.

Revenue

In this section, we consider the revenue behavior of equilibrium points in the polytope. First,
note that the revenue is not the same for all equilibrium points - this is not simply a matter of
dividing a fixed payment up. As an example, consider the following three ad, five interested
party setting: {(A1, B1, C1), (A1, D1), (B1, E1)}. Clearly the first ad should win, but what
should the payments be?

Our CEF, IR and non-negativity conditions give us the following polytope: bA + bC ≥ 1,
bB + bC ≥ 1, 0 ≤ bA, bB, bC ≤ 1. The set of equilibrium points includes (1, 0, 1), (0, 1, 0)
and every convex combination of the two. Thus, the revenue of the equiliubrium points can
range from 1 to 2.

How would other mechanisms do? VCG will charge nothing, as no advertiser is integral
to the ad being displayed. Were A and B to lie and say they are not affiliated with C or D,
any second or first price mechanism would insist on a payment of 1 from the three of them.
In this example then, the revenue of our first price equilibria are lower bounded by VCG,
and by simpler first and second price auctions.

Lemma 17 In the first price coopetitive ad auction, the bid of each advertiser is at least
their VCG payment.

Proof: We provide a simple proof here. Consider advertiser i. Let T be the winning ad,
and let Sj be the winning ad without i. If Sj = T , then i’s VCG payment is 0, and
hence we need only worry about the case that Sj 6= T . By the CEF constraints, we have
bi ≥

∑
k∈Sj\T vk −

∑
k∈Sj\T−{i} bk ≥

∑
k∈Sj\T vk −

∑
k∈Sj\T−{i} vk. The latter quantity is

exactly i’s VCG payment, and hence every advertiser’s bid is at least their VCG payment.

Another revenue benchmark is the “second-price threat”. That is, we could imagine
being in a second-price auction in which the winning bidders collude to only profess their
desire for the winning outcome, and pretend to be uninterested in the other outcomes. In
this case, a second price-esque auction would have them pay the maximum of the values of
non-winning players in non-winning ads.

Any CEF equilibria will get at least the revenue of this outcome.
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Definition 12 The second-price threat is defined as the maximum sum of non-winning val-
ues in a non-winning ad. That is, given a winning ad T , the second price threat is:

max
S 6=T

∑
i∈S\T

vi.

Lemma 18 The revenue of any CEF equilibrium is at least the second price threat.

This follows directly from the CEF conditions. Note that this is the same as the revenue
a second price auction would get if treated advertisements as single agents and removed
interests of winning advertisers in losing ads.

Thus, any first price equilibria that satisfies CEF (eg., no losing advertisers can collabo-
rate to increase their bids and win) has good revenue - revenue that beats both VCG and a
natural analogue to a second price auction.

3.5 The Egalitarian Solution

As discussed earlier, there are many ways the winners can split payments while still satisfying
our equilibrium and cooperative envy-freeness constraints. In a first price auction, the exact
split that we expect bidders to reach will depend on the preferences and bidding dynamics
of the advertisers.

In this section, we consider one such split in particular — the egalitarian bargaining
solution. In the egalitarian solution, the utility of the worst-off player is maximized, and
on up the line. This can be defined as the equilibrium with the lexicographically maximum
utility:

Definition 13 The egalitarian solution in the coopetitive first-price auction is an equilib-
rium that displays the highest surplus ad and charges advertisers so that the utility vector is
lexicographically maximal when bidders are ordered in terms of increasing utility.

In many normal settings, this will result in all players sharing equally the surplus generated.

Algorithm

The egalitarian equilibrium can be computed by repeatedly lowering bids uniformly. The
algorithm is described in Algorithm 4.

Lemma 19 Algorithm 4 computes the egalitarian equilibrium point.

Proof:
First, we show that the resulting point is efficient and cooperatively envy-free — then

we’ll show that the resulting equilibrium must be the egalitarian one.
Begin with the following claim:
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ALGORITHM 4: An algorithm for computing the egalitarian equilibrium in the
single-slot first-price auction.

input : A coopetitive ad auction problem.
output: The egalitarian equilibrium bids bi.

1 Set the bids of all advertisers to their values. Call T the winning ad.
2 Lower bids of advertisers in the winning ad T uniformly until some bidder i reaches
bi = 0 or a constraint

∑
i∈T bi ≥

∑
i∈Sj bi would be violated for some ad Sj.

3 Fix the bids of advertisers in T \ Sj (or fix the bid of i if bi reached 0).
4 Repeat (2) and (3), lowering only unfixed bids until all bidders in T are fixed.

Claim 6 The total bid for the winning ad T never drops below the total bids of non-winning
ads.

At any point, the algorithm lowers only the bids of players in every ad tied for the highest
value. As a result, every ad tied for the highest value is decreasing by the same amount.
Thus, the winning ad at the beginning of the algorithm remains the winning ad at the end
and hence the final winning ad is the ad with the most surplus.

At the end of the auction, as T remains the ad with the highest value and no non-winning
advertisers see their utilities decrease, the CEF constraints will be satisfied for every alternate
ad Sj.

By Lemma 16 we know that our point will be in equilibrium if and only if there is a set
for every agent tied with the winning set that he is not in. Our algorithm will only stop
when for every bidder there is such a set, or they are bidding 0 — hence it must be such an
equilibrium.

Thus, we’ve argued that the final point is an efficient, CEF point. Now, we discuss
whether or not it is in fact the egalitarian solution. We’ll prove this with induction. Assume
that the algorithm gives the egalitarian bargaining solution for the first i − 1 lowest utility
advertisers. Consider the algorithm after those advertisers are fixed - in particular, the next
time an advertiser has their bid fixed, with a utility of z. At this point, there will be a set
Sj s.t. ∑

i∈T\Sj

max(vi − z, b′i) =
∑
i∈T\Sj

vi (3.3)

First, note that the algorithm cannot reduce the bid of i further than the egalitarian so-
lution — otherwise that would be the egalitarian solution. Assume now that the algorithm
results in a lower utility for player i — hence, i’s bid is fixed before being lowered to his egal-
itarian utility. By our assumption, then,

∑
i∈T\Sj max(vi − z, b′i) >

∑
i∈T\Sj b

′
i ≥

∑
i∈T\Sj bi.

By our CEF constraints in the egalitarian solution, we have that
∑

i∈T\Sj bi ≥
∑

i∈T\Sj vi.

Then
∑

i∈T\Sj max(vi − z, b′i) <
∑

i∈T\Sj bi and hence
∑

i∈T\Sj b
′
i =

∑
i∈T\Sj bi. Since all ad-

vertisers with utility less than z have the egalitarian utility, and all advertisers with more
utility are in Sj, b

′
i = bi.



CHAPTER 3. COOPETITIVE AD AUCTIONS 46

3.6 Conclusion and Open Problems

As we have discussed, a wide variety of ads provide value to more than one party — ads for
computers, cell phones, and even baseball teams to name a few. As evidenced by the “sam-
sung intel laptop” query shown in Figure 3.1, current ad auctions completely fail to account
for such shared benefits. While Google may enjoy a little extra revenue at Intel’s expense
in the interim, Figure 3.1 does not represent a sustainable equilibrium — our theoretical
results show that failure to account for the shared benefit of an advertisement can have a
substantial negative effect on both welfare and revenue.

As a possible solution, we showed that the coopetitive first-price auction behaves well in
equilibrium. In particular, all equilibria that satisfy cooperative envy-freeness are efficient
and have good revenue. Moreover, such equilibria can be computed efficiently. Finally, as
noted in Section 3.2, these results generalize to a model where bidders’ have different values
for different ads and multiple slots through the utility-target auction.

The main open question is what is the best way for auctioneers to accommodate the shared
value of an ad? While the first-price auction may have nice equilibria and offer transparency
to bidders, it is not clear if it is the best solution. On the other hand, the VCG auction may
perform poorly, and näıvely building a GSP-style auction will either inherit the downsides
of VCG or allow players to affect the distribution of payments by tweaking their bids. Thus,
while the properties of first-price equilibria presented herein are desirable, the question of
how auctioneers should design real auctions remains unresolved.
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Chapter 4

Single-Call Mechanisms

Truthfulness is fragile and demanding. It is oftentimes harder to guarantee truthfulness
when solving a problem than it is to solve the problem itself. Even worse, truthfulness can
be utterly destroyed by small uncertainties in a mechanism’s outcome. One obstacle is that
truthful payments depend on outcomes other than the one realized, such as the lengths of
non-shortest-paths in a shortest-path auction. Single-call mechanisms are a powerful tool
that circumvents this obstacle — they implicitly charge truthful payments, guaranteeing
truthfulness in expectation using only the outcome realized by the mechanism. The cost of
such truthfulness is a trade-off between the expected quality of the outcome and the risk of
large payments.

In this chapter, we study two of the most general domains for truthful mechanisms and
largely settle when and to what extent single-call mechanisms are possible. The first single-
call construction was discovered by Babaioff, Kleinberg, and Slivkins [9] in single-parameter
domains. They give a transformation that turns any monotone, single-parameter allocation
rule into a truthful-in-expectation single-call mechanism. Our first result is a natural com-
plement to [9]: we give a new transformation that produces a single-call VCG mechanism
from any allocation rule for which VCG payments are truthful. Second, in both the single-
parameter and VCG settings, we precisely characterize the possible transformations, showing
that that a wide variety of transformations are possible but that all take a very simple form.
Finally, we study the inherent trade-off between the expected quality of the outcome and
the risk of large payments. We show that our construction and that of [9] simultaneously
optimize a variety of metrics in their respective domains.

Our study is motivated by settings where uncertainty in a mechanism renders other known
techniques untruthful. As an example, we analyze pay-per-click advertising auctions, where
the truthfulness of the standard VCG-based auction is easily broken when the auctioneer’s
estimated click-through-rates are imprecise.
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4.1 Introduction

In their seminal work that sparked the field of Algorithmic Mechanism Design, Nisan and
Ronen [73] made a striking observation: näıvely computing VCG payments for shortest-
path auctions requires computing “n versions of the original problem.” In their case, it
requires solving n+ 1 different shortest path problems in a network. Over the next decade,
as researchers studied computation in mechanisms, they repeatedly noticed that computing
payments is harder than solving the original problem. Babaioff et al. [11] exhibited a prob-
lem for which deterministic truthfulness is precisely (n + 1)-times harder than the original
problem. In the case of Nisan and Ronen’s own path auction, Hershberger et al. [44] showed
that computing VCG prices for a directed graph requires time equivalent to

√
n shortest

path computations.1

Surprisingly, Babaioff, Kleinberg, and Slivkins [9] recently showed that randomization
eliminated this difficulty for a large class of problems. They showed that, if in a single-
parameter domain payments need only be truthful in expectation, then they may be computed
by solving the original problem only once. They apply their result to Nisan and Ronen’s
path auctions to get a truthful-in-expectation mechanism that uses precisely one shortest-
path computation and chooses the shortest path with probability arbitrarily close to 1. We
call this a single-call mechanism.

The usefulness of Babaioff, Kleinberg, and Slivkins’ result goes far beyond speeding
up computation: Their construction enables truthfulness in cases in which computing “n
versions of the original problem” is informationally impossible. To use again the Nisan-Ronen
path auction, suppose that the graph represents a packet network with existing traffic. In
this case, the actual transit times (i.e. costs to edges) may be increased by congestion. While
it is possible to estimate congestion ex ante, it is generally impossible to precisely know its
effect without transmitting a packet and explicitly measuring its transit time. Unfortunately,
since VCG prices depend on the transit times for many different paths, näıvely computing
them will inherit any estimation errors. Even worse, when bidders have conflicting beliefs
about such errors, näıvely computing“VCG” prices with bad estimates may not guarantee
truthfulness even if the errors are small enough that they not affect the path chosen by
the mechanism. In such a case, truthfulness may be regained using a mechanism that
only requires measurements along a single path, that is, a mechanism that only requires
measurements returned by a single call to the shortest-path algorithm. We will concretely
demonstrate this phenomenon later using an example based on pay-per-click advertising
auctions.

An important question arises then: In which mechanism design problems, and to what
extent, are single-call mechanisms possible? In this paper we study, and largely settle, this
question for two large domains of truthful mechanisms. First, we show that this it is possible

1 Interestingly, the undirected case is easier. Hershberger and Suri [43, 42] show that it only requires
time equivalent to a single shortest-path computation. Their work is orthogonal to our own — single-call
mechanisms achieve truthfulness in a limited-information setting using only one shortest-path computation,
while [44, 43, 42] assume complete information and study an algorithmic problem.
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to transform any mechanism that charges VCG prices in expectation into a roughly equivalent
single-call mechanism. While similar in spirit to [9], our reduction charges prices that are
fundamentally different from the mechanism in that paper — they do not coincide even when
applied to the same allocation rule. Second, we give characterization theorems, delineating
precisely the single-call mechanisms that are possible, for both the VCG and single-parameter
settings. Finally, single-call constructions offer a tradeoff between expectation and risk. Our
characterization theorems allow us to derive lower bounds on this tradeoff, establishing that
our VCG construction and the construction of [9] are optimal in a general sense.

Mechanisms, Allocations, and Payments One cornerstone of mechanism design is the
decomposition of a mechanism into two distinct parts: an allocation function and a payment
function. This approach has borne much fruit — it first revealed fundamental relationships
between allocation functions and their nearly unique truthful prices, and it subsequently
allowed researchers to study the the two problems in isolation. Like [9], we leverage this
decomposition to study payment techniques that apply to large classes of allocation functions
— naturally, our primary requirement is that the allocation function may only be evaluated
once.

We will focus on single-call mechanisms for two classes of allocation functions that, to-
gether, comprise most allocation functions for which truthful payments are known: monotone
single-parameter functions and maximal in distributional range (MIDR) functions.

An allocation function is said to be single-parameter if an agent’s bid can be expressed
as a single number. This setting was first studied by Myerson [71] in the context of single-
item auctions. Subsequent generalizations showed that truthful prices existed if and only if a
single-parameter allocation is monotone and provided an explicit characterization of truthful
payments. We will use one such characterization developed by Archer and Tardos [2].

An allocation function is said to be maximal in distributional range (MIDR) if, for some
fixed set of distributions over outcomes, the allocation always chooses one that maximizes
the social welfare of the bidders. MIDR allocation functions are important because they are
precisely the ones for which VCG payments are truthful [26].

Truthfulness Under Uncertainty Our motivation for developing and optimizing single-
call mechanisms comes from scenarios where nature prohibits computing an allocation more
than once, most often due to parameter uncertainty. We give a few examples here; more
generally, we conjecture that most mechanism design problems have similar variants.

In the uncertain shortest-path auction described earlier, truthful prices will depend on
the incremental effect of transit times adjusted for congestion. If the auctioneer generates
the network traffic, he may be able to predict the congestion in an edge better than the edge
itself and use this prediction when computing the shortest path. However, each edge may
individually disagree with the auctioneer’s estimate, and these beliefs are generally unknown
to the auctioneer. If the auctioneer were to simply compute VCG payments by combining his
estimates with players’ bids, the prices would likely not be truthful. On the other hand, we
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can require that payments are computed using measured transit times instead of estimates;
however, it is informationally impossible to know the precise delay along edges that were not
actually traversed. A single-call mechanism sidesteps this hurdle by using only the delays
along traversed edges for which the delay had been precisely known.

Machine scheduling offers another application for single-call mechanisms. In some ap-
plications (e.g. cloud services), it is common for machines to bid in terms of cost per unit
time (or other resource). It is then the responsibility of the scheduler to estimate the time
required for the job on that machine. If the scheduler’s estimates differ from a machine’s
belief about a job’s runtime, then we find ourselves in the same situation as the path auction
— the standard truthful prices for this single-parameter setting will depend on machines’ be-
liefs about the runtimes of jobs under alternate schedules. A single-call mechanism sidesteps
this problem because it requires only the runtimes of jobs under the schedule chosen by the
mechanism, which may be measured.

Another interesting example arises in the application of learning procedures such as
multi-arm-bandits (MABs). In recurring mechanisms, it is natural for the auctioneer to
run a learning algorithm across multiple auctions. For example, when an online advertising
auction is repeated, the auctioneer tries to learn the likelihood that a particular ad will
get clicked. Computing truthful prices requires knowing what would have happened if the
learner had been initialized with a different set of bids. This setting was the original mo-
tivation of [9], where they showed that their single-call construction allowed a MAB to be
implemented truthfully with O(

√
T ) regret. This contrasts with results of Babaioff, Sharma,

and Slivkins [10] and Devanur and Kakade [24] who showed that any universally truthful

mechanism must have regret at least Ω(T
2
3 ) for different measurements of regret.

Finally, in Section 4.5 we analyze single-shot pay-per-click (PPC) advertising auctions. A
PPC advertising auction ranks bidders using their pay-per-click bid (i.e. they only pay when
they receive a click) and an estimate of the probability of a click (the click-through rate,
or CTR). If the bidders’ estimates of their own CTRs are different from the auctioneer’s,
truthful prices necessarily depend on bidders’ beliefs about the CTRs, which are unknown.

Single-Call Mechanisms and Reductions The informational limitations of single-call
mechanisms are formalized through the concept of a single-call reduction, the main object
of study in this paper. A single-call reduction is a transformation that takes an allocation
function as a black-box and produces a truthful-in-expectation mechanism that calls the
allocation function once.Since the expected payment is equal to the truthful payment for the
resulting mechanism, the payments are dubbed implicit.

Babaioff, Kleinberg, and Slivkins [9] discovered such a reduction for single-parameter
domains. Using only the guarantee that the black-box allocation rule is monotone, their
reduction produces a truthful-in-expectation mechanism that implements the same outcome
as the original allocation rule with probability arbitrarily close to 1.2

2The authors of [9] have observed that their construction may be extended to any domain where the bid
space is convex.



CHAPTER 4. SINGLE-CALL MECHANISMS 51

VCG is a mechanism design framework much broader than single-parameter. Can we
construct similar single-call mechanisms that charge VCG prices? We answer this in the
affirmative by giving a reduction producing, for any MIDR allocation function, a single-call
mechanism that charges VCG prices in expectation. Analogous to [9], our reduction trans-
forms any MIDR allocation rule into a truthful-in-expectation mechanism that implements
the same outcome as the original allocation rule with probability arbitrarily close to 1. How-
ever, our construction is fundamentally different in that the distribution of payments does not
coincide with [9] when an allocation is both MIDR and single-parameter. This reduction can
guarantee truthfulness in multi-parameter mechanisms with uncertainty, as described above,
and can also be used to speed up payment computation in MIDR settings like Dughmi and
Roughgarden’s [27] truthful FPTAS for welfare-maximization packing problems.

We next ask what single-call reductions are possible? Babaioff et al. generalize to a class
of self-resampling procedures. Subsequent research [39] generalized further (and simplified
substantially), but concisely characterizing single-call reductions remained an open ques-
tion. We give tight characterization theorems, showing that a wide variety of reductions
are possible and that payments have a very simple characterization in both scenarios. The
key technical idea is a simple proof equating a reduction’s expected payments with those
required for truthfulness, giving a sharp characterization of the parameters in the reduction.
Our technique is a very simple alternative to the contraction mapping argument in [9].

Finally, we ask what are the best single-call reductions? As noted above, known single-
call reductions choose an outcome different from the original allocation rule with some small
probability δ. The penalty for making δ small is that the payments may occasionally be
very large — we study this tradeoff. Our study is not unprecedented: [9] asked, as an
open question, if their reduction optimized payments with respect to the welfare loss, and
Lahaie [62] show a similar tradeoff between the size and complexity of kernel-based payments
achieving ε-incentive compatibility in single-call combinatorial auctions.

We study the tradeoff inherent to single-call mechanisms with respect to three measures
of expectation — welfare, revenue, and a technical (but natural) precision metric — and
two measures of risk — variance and worst-case payments. We show that our VCG reduc-
tion and the single-parameter reduction of [9] simultaneously optimize the tradeoff between
expectation and risk for all these criteria.

Subsequent Work In recent follow-up work, Babaioff, Kleinberg, and Slivkins [8] showed
how their reduction for single-parameter domains could be extended to arbitrary convex
type-spaces. They use their reduction to design a truthful multi-armed bandit for a multi-
parameter ad auction setting.

4.2 Preliminaries

A mechanism is a protocol among n rational agents that implements a social choice function
over a set of outcomes O. Agent i has preferences over outcomes o ∈ O given by a valuation
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function vi : O → R. The function vi is private but is drawn from a publicly known set
Vi ⊆ RO.

A deterministic direct revelation mechanism M is a social choice function A : V1 ×
. . . Vn → O, also known as an allocation rule, and a vector of payment functions p1, . . . , pn
where pi : V1 × . . . Vn → R is the amount that agent i pays to the mechanism designer.
When a direct revelation3 mechanism is instantiated, each agent reports a bid bi ∈ Vi. The
mechanism uses bids b = (b1, . . . , bn) to choose an outcome A(b) ∈ O and to compute
payments pi(b). The utility ui(vi, o) that agent i receives is ui(vi, o) = vi(o)− pi.

A mechanism is truthful (or incentive compatible) if bidding truthfully (i.e. bi = vi) is
a dominant strategy. Formally, for each i, each v−i ∈ V−i, and every vi, vi

′ ∈ Vi, we have
ui(vi, A(v)) ≥ ui(vi, A(vi

′, v−i)), where v−i denotes the vector of valuations for all agents
except agent i.

A mechanism is ex-post individually rational (IR) if agents always get non-negative utility,
and mechanism has no positive transfers (NPT) if for each agent i and each v ∈ V , pi(v) ≥ 0,
i.e., the mechanism never pays a player money.

A randomized mechanism is a distribution over deterministic mechanisms. Thus, A(b)
and pi(b) are random variables. For randomized mechanisms, properties like truthfulness
may be said to hold universally or in expectation. A randomized mechanism is universally
truthful if it is truthful for every deterministic mechanism in its support. It is truthful in
expectation if, in expectation over the randomization of the mechanism, truthful bidding
is a dominant strategy. Henceforth, we use truthful, IR, and NPT to mean truthful in
expectation unless otherwise noted.

MIDR Allocation Rules MIDR mechanisms are variants of VCG mechanisms, mecha-
nisms that maximize social welfare and charge “VCG payments”. Formally, a VCG mech-
anism’s social choice rule satisfies A(v) ∈ argmax

o∈O

∑
j vj(o), and its payments are pi(v) =

hi(v−i)−
∑

j 6=i vj(A(v)) for some function hi : V−i → R. VCG payments are the only univer-
sal technique known to induce truthful bidding. The most common implementation of VCG
payments uses the Clarke-Pivot payment rule: set hi(v−i) = max

o∈O
(
∑

j 6=i vj(o)), which gives

the only payments that simultaneously satisfy truthfulness, IR, and NPT.
More generally, any allocation rule that maximizes an affine function of agents’ valuations

can be truthfully implemented with VCG payments. Moreover, Roberts’ theorem [82] implies
that in a general setting (when Vi = RO), if A is onto (every outcome can be realized), then
A has truthful payments if and only if it is an affine maximizer. If the “onto” restriction is
relaxed, a social choice function is truthfully implementable with VCG payments if and only
if it is (weighted) maximal-in-range (MIR) [74] or, for randomized mechanisms, maximal-in-
distributional-range (MIDR) [26]:

3“Direct revelation” means that an agent’s bid bi is an element of Vi. In general this need not be the
case; however, by the revelation principle, any social choice rule that may be truthfully implemented may
be implemented as a direct revelation mechanism that charges the same payments in equilibrium.
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Definition 14 An allocation rule A is MIDR if there is a set D of probability distribu-
tions over outcomes such that A outputs a random sample from the distribution D ∈ D
that maximizes expected welfare. Formally, for each v ∈ V , A(v) = o ∼ D∗ where D∗ ∈
argmax
D∈D

Eo∼D[
∑

i vi(o)].

A weighted MIDR allocation rule maximizes the weighted social welfare
∑

iwivi(o) for wi ≥
0.

Single-Parameter Domains A larger class of social choice rules can be implemented
when Vi is single dimensional. We say that a social choice rule has a single-parameter
domain if vi(o) = tifi(o) for some publicly known function fi : O → R+. The value ti ∈ Ti is
an agent’s type (Ti is her type-space, and T = T1×· · ·×Tn), and submitting i’s bid precisely
requires stating bi = ti. When T = Rn

+, we say that bidders have positive types. We also
use Ai(b) = fi(A(b)) as shorthand, and we say A is bounded if the functions Ai are bounded
functions.

A single-parameter social choice rule may be implemented if and only if it is monotone,
where A : T → O is said to be monotone if for each agent i, for all b−i ∈ T−i and for every
two bids bi ≥ b′i, we have Ai(bi, b−i) ≥ Ai(b

′
i, b−i). This was first shown for a single item

auction by Myerson [71]; Archer and Tardos [2] gave the current generalization:

Theorem 20 [Myerson + Archer-Tardos] For a single parameter domain, an allocation rule
A has truthful payments (p1, . . . , pn) if and only if A is monotone. These payments take the
form

pi(b) = hi(b−i) + biAi(bi, b−i)−
∫ bi

0

Ai(u, b−i) du,

where hi(b−i) is independent of bi.

These payments simultaneously satisfy IR and NPT if and only if pi
0(b−i) = 0. Such a

mechanism is said to be normalized.

4.3 Single-Call Mechanisms and Single-Call

Reductions

Single-call mechanisms capture the idea that the outcome of an auction is generated by a
process that is not fully known and cannot be repeated. In this section, we will see that
single-call mechanisms are naturally formalized as the the output of a black-box reduction
that we call a single-call reduction. We also formalize some of the trade-offs inherent in
single-call mechanisms.

In each of our motivating examples, the mechanism designer has access to a procedure
A(·) that he wishes to implement truthfully. For example, A might be a procedure that uses
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links’ reported costs to route a packet along the shortest path in a network. Alternatively,
A could be a procedure that ranks ads then displays them to the user.

Moreover, A can only be called once by the mechanism because it produces an irreversible
outcome. For example, the purpose of an ad auction is to decide which ads to display to
the user. Thus, if A displays ads, it can only be called once per ad auction. In effect, the
outcome generated by calling A is necessarily the outcome of the mechanism.

This intuition gives us the following formal definition:

Definition 15 A single-call mechanismM for an allocation rule A is a truthful mechanism
that computes both the allocation and payments with a single oracle call to A. The output of
M is the outcome of the single call to A.

The definition of a single-call mechanism captures some important ideas, but it is still
missing a key ingredient of the settings we presented earlier: limited information. The critical
obstacle faced by the mechanism designer in our examples is that he does not know exactly
what A will do. For example, when A routed packets, the designer could not know the
precise transit time of a packet without actually calling A and measuring the result.

In a worst-case setting, the mechanism designer knows whether he might be given a
particular A, but otherwise does not know anything about the A he is actually given until he
calls it. Formally, we let Ω be a set of allocation rules. The mechanism designer knows that
A was drawn from Ω, but otherwise does not know anything about which A ∈ Ω besides the
result of his one call to A.

Our goal now is to define a family of mechanisms F(·) such that F(A) is a single-call
mechanism for every A ∈ Ω. In effect, F will be a procedure that reduces the problem of
implementing a truthful mechanism to the problem of calling A once, hence it is a black box
reduction:

Definition 16 A single-call reduction is a procedure that takes any allocation function A
from a known set Ω (as a black box) and returns a single-call mechanism.

For example, the procedure of [9] is a single-call reduction whose input allocation function A
is drawn from the set of all monotone, bounded, single-parameter allocation rules and whose
output is a single-call mechanism. Similarly, our construction for VCG prices is a single-call
reduction that takes any A that is MIDR and returns a single-call mechanism.

The following example illustrates single-call mechanisms and some of their subtleties:

Example 5 An auctioneer has a single item to sell as well as a monotone mystery procedure
A(·) that selects a winner. The auctioneer takes bids bi ∈ R+ and calls A(b) to give the item
to the winner.

Having used A to run the mystery auction, the auctioneer must now compute payments.
Since this is a single-parameter setting, we know [71, 2] that payments are given by pi(b) =

biAi(bi, b−i)−
∫ bi

0
Ai(u, b−i) du . Here are some strategies the auctioneer could consider:
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1. Numerically compute pi(b) by calling A whenever the computation requires A(x) for
x 6= b.

Unfortunately, this requires evaluating A not just at b, but also at many points of the
form (b−i, u). Thus, it would not be a single-call mechanism.

2. Numerically compute pi(b) by simulating A(x) for all x 6= b.

This would be a single-call mechanism, but the auctioneer does not have enough in-
formation to simulate A(x). (On the other hand, if he could simulate A(x), then this
strategy would work and the problem of computing payments is easy.)

3. Guess a function Ã and numerically compute pi(b) by computing Ã(x) whenever A(x)
is required.

This solves the informational problem that we cannot simulate A and it only requires
calling A once; however, it will only be truthful if the auctioneer guessed Ã correctly,
so it does not necessarily produce a single-call mechanism.

4. Use the single-call reduction of [9]. (As will be clear later, the auctioneer must choose
this option before calling A.)

Since A is a monotone, single-parameter allocation procedure, these payments give a
single-call mechanism.

Remark 1 The “single-call” property is fundamentally computational. As noted earlier,
the definition of a single-call mechanism does not limit the information available to the
mechanism designer — he might have no knowledge of A or he might some information
about what A does. In the extreme, the designer might even know precisely what A does and
already know how to compute truthful payments pi(b). However, according to our definition,
such mechanism is a single-call mechanism as long as it only calls A once. Thus, calling
something a “single-call mechanism” is not a statement about the allocation and payments but
rather a statement about how they are implemented. Informational limitations are formalized
through the idea of a single-call reduction.
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To parameterize single-call reductions, we first note the following requirements:

• A reduction must take a bid vector b and a black-box allocation function A as input.

• A reduction must evaluate A on at most one bid vector b̂, causing the outcome A(b̂)
to be realized.4

• A reduction must charge payments λi that are a function of b, b̂, and A(b̂) (and possibly
its own randomness).

These requirements suggest the following generic definition of a single-call reduction to turn
an allocation function A into a truthful-in-expectation single-call mechanismM = (A, {Pi}):

1. Solicit the bid vector b from agents.

2. Use b to compute the modified bid vector b̂. This implicitly defines a probability
measure µb(B) denoting the probability of choosing b̂ ∈ B ⊆ V1 × · · · × Vn as the
modified (resampled) bid vector when b is the actual bid vector. When b̂i 6= bi, we say
that i’s bid was resampled.

3. Declare the outcome to be A(b̂), i.e. evaluate A at the modified bid vector b̂. This
implicitly defines the allocation function A(b) which samples b̂ ∼ µb and chooses the
outcome A(b̂). The resampling procedure must ensure that truthful payments P(b)
exist for A(b); Note that A(b) and P(b) are random variables that depend on the
randomly resampled bid vector b̂. Also, A(b) and P(b) are randomized even if A(b)
and p(b) are deterministic;

4. Use b, b̂, and A(b̂) to compute payments λi(A(b̂), b̂, b) that satisfy truthfulness in ex-
pectation, that is, charge player i a payment λi(A(b̂), b̂, b) such that E

b̂
[λi(A(b̂), b̂, b)] =

E
b̂
[Pi(b)].

This general procedure is illustrated in Algorithm 5.
We describe a single-call reduction in the above framework by the tuple (µ, {λi}), where

µ implies specifying the resampling measure µb for all b ∈ V1 × · · · × Vn. Since payments
should be finite, we require that λi be finite everywhere, and we also require that it be
integrable. For the rest of this paper, we assume that λi’s are deterministic. For randomized
λi’s, the characterization theorems still hold with λi’s replaced by their expectations over
the randomness used.

We say that a reduction is normalized if bi(A(b)) = 0 for all i implies λi(A(b̂), b̂, b) = 0,
i.e. when every agent receives zero value, all payments are zero.

4Strictly speaking, there may be settings where a single-call reduction could realize an outcome other
than A(b̂). However, our restriction follows naturally in scenarios where “computing A(b)” means realizing
A(b) and making measurements. It is also required for complete generality because there is no reason to

believe that the designer knows how to realize any outcome other than A(b̂).
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ALGORITHM 5: Generic Single-Call Reduction (µ, {λi})
input : Black box access to an allocation function A, which is drawn from a known

set.
output: Truthful-in-expectation mechanism M = (A, {Pi}).

1 Solicit bid vector b from agents;

2 Sample b̂ ∼ µb;

3 Realize the outcome A(b̂); // A(b) is the random function A(b̂) where b̂ ∼ µb

4 Charge payments λ(A(b̂), b̂, b); // Pi(b) is the random function λi(A(b̂), b̂, b)

where b̂ ∼ µb

Optimal Reductions — Expectation vs. Risk

There are two downsides to the mechanisms produced by single-call reductions. First, there
is a penalty in expectation, i.e., the expected outcome Eb̂[A(b̂)] produced by the reduction is
not identical to the desired outcome, A(b). This modified outcome may reduce the expected
welfare or revenue of the mechanism, or it may simply cause it to do the “wrong” thing.

Second, there is a penalty in risk because the payments λ may vary significantly, i.e. for a
fixed b the payments at different resampled bids b̂ could be very different. In particular, the
magnitude of the payment charged by the single-call mechanism may be much larger than
the payments in the original mechanism, i.e. it may be that |λi| � |pi| for certain outcomes.

Our characterization theorems reveal that there is a fundamental trade-off between ex-
pectation and risk. Thus, we call a reduction optimal if it minimizes risk with respect to a
lower bound on the expectation.

Expectation

We study three criteria for measuring the expectation of a reduction: Pr(b̂ = b|b), social
welfare, and revenue.

The first criterion, Pr(b̂ = b|b) (the precision), measures the likelihood that the reduction
modifies players’ bids. This criterion is natural when modifying bids is inherently undesir-
able:

Definition 17 The precision of a reduction αP is the probability that the reduction does not
alter any player’s bid:

αP ≡ min
b

Pr(b̂ = b|b) .

The other criteria measure standard quantities in mechanism design:

Definition 18 The welfare approximation αW of a single-call reduction is given by the
worst-case ratio between the welfare of the single-call mechanism and the welfare of the
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original allocation function:

αW = min
A,b

Eb̂ [
∑

i bi(Ai(b))]∑
i bi(Ai(b))

.

When the welfare of A is zero, αW = 1 if the welfare of A is also zero and unbounded
otherwise.

Definition 19 The revenue approximation αR of a single-call reduction is given by the
worst-case ratio between the revenue of the single-call mechanism and the revenue of the
original allocation function:

αR = min
A,b

Eb̂ [
∑

iPi(b)]∑
i pi(b)

.

When the revenue of A is zero, then αR = 1 when the revenue of A is also zero and unbounded
otherwise.

In the case of continuous spaces we replace min/max with inf/sup as appropriate for
infinite domains.

Risk

We measure risk through both the variance of payments and their worst-case magnitude.5

In order to make a meaningful comparison across different allocation functions and bids, we
normalize by players’ bids:6

Definition 20 Decompose λi into terms which depend only on the payoff to a single bidder
j (i.e. on bj(A(b̂)) instead of A(b̂)):

λi(A(b̂), b̂, b) =
∑
j

λij(bj(A(b̂)), b̂, b)

(our characterizations in Sections 4.4 and 4.6 show that this is possible for our settings).
Then the bid-normalized payments of the reduction are given by

∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))
.

5Intuition suggests optimizing with respect to a high-probability bound. Unfortunately, this is prob-
lematic because ignoring low-probability events can dramatically change the expected payment. Thus, in
general it is not reasonable to conclude a priori that low-probability events can be ignored.

6Intuition also suggests normalizing by the truthful prices for A (i.e. by pi), but constant allocation
functions such as Ai(b) = 1 have pi = 0, making this impossible. Bid-normalized payments are a next logical
choice.
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We can thus write the variance of bid-normalized payments as

max
A,i

Varb̂∼µb

(∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))

)

and the worst-case magnitude as

max
A,i,b̂

∣∣∣∣∣∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))

∣∣∣∣∣
where we replace min/max with inf/sup as appropriate for infinite domains.

Optimality

We define an optimal reduction as one that simultaneously optimizes the six-way trade-off
between expectation and risk:

Definition 21 A single-call reduction optimizes the variance of/worst-case payments with
respect to precision/welfare/revenue for a set of allocation functions if for every bid b, it
minimizes the variance of/worst-case normalized payments over all possible reductions that
achieve a precision of αP / welfare approximation of αW / revenue approximation of αR.

4.4 Maximal-in-Distributional-Range Reductions

In this section, we show how to construct a single-call reduction for MIDR allocation rules,
i.e. we show how to construct a randomized, truthful mechanism from an arbitrary MIDR
allocation rule A using only a single black-box call to A. The main results are Theorem 21, a
characterization of all reductions that use VCG payments for an arbitrary MIDR allocation
rule, and an explicit construction that optimizes the expectation-risk tradeoff.

Truthful payments for MIDR allocation rules are given by VCG payments with the
Clarke-Pivot rule:7

E[pi] = E[total welfare of bidders without i]− E[total welfare of bidders j 6= i with i](4.1)

(where the expectation is over the randomization in the given MIDR allocation rule). The
reduction comes from this formula for E[pi]: we need to measure the welfare without agent
i (the first term in the RHS), so, with some probability, we ignore agent i and maximize the
welfare of the remaining agents. Intuitively, this is equivalent to evaluating the allocation
function where i’s bid is changed to a “zero” bid while other bids remain the same.

7If we relax the no positive transfers requirement, a trivial way to construct a single-call mechanism is
to ignore the first term in (4.1). However, the resulting mechanism would make a huge loss because no agent
would ever pay the mechanism.
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Unfortunately, having removed agent i, even with a small probability, means that com-
puting truthful payments for agent j 6= i requires knowing the allocation where both i and j
are ignored. By induction, a single-call mechanism must generate all sets of agents M ⊆ [n]
with some probability. Thus, we get an intuitive picture of the reduction’s behavior: it will
randomly pick a set of bidders M ⊆ [n] and zero the bids of agents not in M .

Characterizing Truthfulness

We consider reductions in which i’s resampled bid b̂i is always bi or zero,8 where “zero” means
that the agent has a valuation of zero for all outcomes. That is, the resampling measure
µb(B) represents a discrete distribution over the bids {b̂M} where M ⊆ [n] is a set of agents
and

b̂Mi =

{
bi i ∈M
0 i 6∈M

Resampling to b̂M is equivalent to ignoring the welfare of agents outside M and evaluating
A at b.

In the most general setting, our restriction to zeroing reductions is without loss of gen-
erality because b and zero are the only bids that are guaranteed to be valid inputs to A for
all MIDR allocation functions A. That said, even if a multi-parameter bid structure were
known, VCG payments do not depend on the outcome at any other bid. Thus, intuition
suggests that resampling to other bids will not be helpful even if it is possible. This intuition
can be formalized, but we do not do it here.

Let π(M) be a distribution over sets M ⊆ [n]. We define the associated coefficients
cπi (M) as:

cπi (M) =

{
−1, i ∈M
π(M∪{i})
π(M)

, i 6∈M
Intuitively, cπi is the weighting that ensures −π(M ∪ {i})cπi (M ∪ {i}) = π(M)cπi (M) (where
i 6∈M) to match the terms in (4.1).

We prove the following characterization of all truthful MIDR reductions (π, {λi}) that
work for all MIDR A:

Theorem 21 A normalized single-call reduction, with VCG payments, for the set of all
MIDR allocation rules satisfies truthfulness, individual rationality, and no positive transfers
in an ex-post sense if and only if it takes the form (π, {λi}) where π(M) is a distribution

over sets M ⊆ [n], the coefficients c
π(M)
i are finite, and payments take the form

λi(A(b̂M), b̂M , b) = cπi (M)
∑
j 6=i

bj(A(b̂M)) .

8Even if explicit “zero” bids are not known to the reduction, we assume that the reduction can induce A
to optimize the utility of an arbitrary subset of agents. Note that a black-box allocation function can only
be turned into a truthful mechanism (even if multiple calls to A are allowed) if it can ignore at least one
bidder at a time, so our assumption is not unreasonable.
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Proof: Recall that in general, a multi-parameter allocation function that can be rendered
truthful by VCG payments must be MIDR. Thus, our reduction must ensure that A is
MIDR, and we first derive the implications of this requirement on the single-call reduction.
We have already assumed that µb(B) is a distribution over bids {b̂M}. Let πb(M) be the
probability of selecting b̂M given b.

First, we show that A is always MIDR if and only if πb(M) does not depend on b. For
the if direction, if πb(M) is independent of b then A is a distribution over MIDR allocation
rules, and by [27], such an allocation rule is MIDR.

For the only if direction, we use contradiction. Assume that there are some bids x and y
such that πx(M) 6= πy(M) for some M . Then there exists a set S ⊆ [n] such that Prπ(M ⊆
S|x) 6= Prπ(M ⊆ S|y) (by contradiction and induction, start with S = ∅). Consider an
allocation function that has welfare

∑
i bi(A(b̂M)) = 0 for M ⊆ S and

∑
i bi(A(b̂M)) = 1

otherwise. The welfare of A will be precisely 1 − Prπ(M ⊆ S), implying that for either x
or y, A did not chose the distribution that maximized social welfare and is therefore not
MIDR. Thus, the allocation rule A is MIDR for all MIDR A if and only if µb(B) is a discrete
distribution π(M) independent of b.

Next, we write VCG payments for A that satisfy individual rationality and no positive
transfers using the Clarke-Pivot payment rule:

E[Pi] =
∑
j 6=i

∑
M⊆[n]

π(M)bj(A(b̂M\{i}))−
∑
j 6=i

∑
M⊆[n]

π(M)bj(A(b̂M))

=
∑

M |i 6∈M

π(M ∪ {i})
∑
j 6=i

bj(A(b̂M))−
∑

M |i∈M

π(M)
∑
j 6=i

bj(A(b̂M)) . (4.2)

By definition of λi(A(b̂M), b̂M , b), we know that the expected payment made by i will be

E[Pi] =
∑
M⊆[n]

π(M)λi(A(b̂M), b̂M , b) . (4.3)

The two formulas for payments in (4.2) and (4.3) must be equal:∑
M⊆[n]

π(M)λi(A(b̂M), b̂M , b) =
∑

M |i 6∈M

π(M ∪ {i})
∑
j 6=i

bj(A(b̂M))−
∑

M |i∈M

π(M)
∑
j 6=i

bj(A(b̂M)) .

Since A may be any MIDR allocation function, the only way this can hold is when terms
corresponding to each M are equal, i.e., for all i, M

π(M)λi(A(b̂M), b̂M , b) =

{
π(M ∪ {i})

∑
j 6=i bj(A(b̂M), i 6∈M

−π(M)
∑

j 6=i bj(A(b̂M)) i ∈M .
(4.4)

To see that this is necessary, construct two allocation functionsA andA′ such that bj(A(b̂M)) =

bj(A
′(b̂M)) for all M 6= M̄ and bj(A(b̂M̄)) = 0. It immediately follows that if the reduction
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works for both A and A′, then (4.4) must hold for M̄ under A. Since M̄ is arbitrary, it
follows that (4.4) must hold for all M .

The theorem immediately follows from the above equality.

Remark 2 Note that this theorem forbids some distributions π(M) from being used to con-
struct a single-call reduction — in particular, it requires that π(M) > 0 for all M ⊆ [n],
otherwise some payment λi(·) will be infinite for nontrivial allocation rules. For example,
an obviously forbidden distribution is the one that never changes bids, i.e. the one with
π([n]) = 1. This matches the intuition that a single-call mechanism must occasionally mod-
ify bids.

A Single-Call MIDR Reduction

We now give an explicit single-call reduction for MIDR allocation functions. Our reduction
MIDRtoMech(A, γ) (illustrated in Algorithm 6) is defined by the following resampling
distribution π̄ parameterized by a constant γ ∈ (0, 1):

π̄(M) = γn−|M |(1− γ)|M | (4.5)

That is, each agent i is independently dropped from M with probability γ. Thus sampling
from the distribution π̄ is computationally easy. Following Theorem 21, we charge payments
λi(A(b̂M), b̂M , b) = cπ̄i (M)

∑
j 6=i bi(A(b̂M)) where

cπ̄i (M) =

{
−1, i ∈M
1−γ
γ
, i 6∈M

Corollary 22 (of Theorem 21) The mechanism

M = (A, {Pi}) = MIDRtoMech(A, γ)

calls A once and it satisfies truthfulness, individual rationality, and no positive transfers in
an ex-post sense for all MIDR A.

Optimal Single-Call MIDR Reductions

We now prove that the construction MIDRtoMech(A, γ) is optimal for the definitions of
optimality given in Section 4.3. Theorem 21 implies that the bid-normalized payments will
be ∑

j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))
= (n− 1)cπi (M)

Thus, it is sufficient to optimize the variance as maxi VarM∼πc
π
i (M) and the worst-case as

maxi,M |cπi (M)|.



CHAPTER 4. SINGLE-CALL MECHANISMS 63

ALGORITHM 6: MIDRtoMech(A, γ) — A single-call reduction for MIDR alloca-
tion functions

input : MIDR allocation function A.
output: Truthful-in-expectation mechanism M = (A, {Pi}).

1 Solicit bids b from agents;
2 for i ∈ [n] do

with probability 1− γ
Add agent i to set M ;

otherwise
Drop agent i from M ;

3 Realize the outcome A(b̂M);
4 Charge payments

λi(A(b̂M), b̂M , b) =
(∑

j 6=i bj(A(b̂M))
)
×

{
−1, i ∈M
1−γ
γ
, i 6∈M

;

Optimizing Risk vs. Precision

Theorem 23 The reduction MIDRtoMech(A, γ) uniquely minimizes both the payment
variance and the worst-case payment among all reductions that achieve a precision of at
least αP = (1− γ)n.

That is, for any other distribution π with precision π([n]) ≥ (1−γ)n, the payment variance
is larger, i.e.

max
i

VarM∼πc
π
i (M) > max

i
VarM∼π̄c

π̄
i (M) ,

and the worst-case payment is larger, i.e.

max
i,M
|cπi (M)| > max

i,M
|cπ̄i (M)| .

Proof: First we prove optimality for the worst-case payment maxi,M |cπi (M)| by contradic-
tion. Assume that some distribution π(M) does as well as π̄(M). Then it must be that
maxi,M cπi (M) ≤ maxi,M cπ̄i (M) (the largest coefficient is not bigger), and π([n]) ≥ π̄([n]) =
αP (it respects the lower bound on precision). Since max cπ̄i (M) = 1−γ

γ
, it must be that for

all M and i 6∈M ,

π(M ∪ {i})
π(M)

≤ max
i,M

cπ̄i (M) =
1− γ
γ

=
π̄(M ∪ {i})
π̄(M)

.

Therefore, for any bidder i, it must be that

π([n])

π([n] \ {i})
≤ π̄([n])

π̄([n] \ {i})
.
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Since π([n]) ≥ π̄([n]), it follows that π([n] \ {i}) ≥ π̄([n] \ {i}). Repeating this argument, it
follows by induction that π(M) ≥ π̄(M) for any set M .

However, we also know that both π(M) and π̄(M) are distributions so both have to sum
to one over all M . Given that π(M) ≥ π̄(M) for all M , this implies π(M) = π̄(M). Thus,
π̄(M) is uniquely optimal.

Second, we argue that π̄ optimizes the payment variance. The variance of bidder i’s
payments is

VarM∼πc
π
i (M) =

∑
M⊆[n]

π(M) (cπi (M))2 −

∑
M⊆[n]

π(M)cπi (M)

2

=
∑
M⊆[n]

π(M) (cπi (M))2 − 0

=
∑

M⊆[n]\{i}

(π(M) + π(M ∪ {i})π(M ∪ {i})
π(M)

This is minimized when Pr(i ∈ M) is independent of other bidders (Lemma 66), i.e.
π(M∪{i})
π(M)

= 1−γi
γi

for some constant γi. For such a distribution, the precision will be

π([n]) =
∏
i

(1− γi) .

It follows that the maximum variance is maxi
1−γi
γi

, and it will only be minimized when
γi = γj for all i 6= j, which corresponds precisely to the distribution π̄.

Optimizing Risk vs. Welfare

A natural optimization metric is the social welfare of A (indeed, this was an open question
from [9] in the single-parameter setting).

Unfortunately, since MIDR allocation rules may generate negative utilities and remain
MIDR under additive shifts of the valuation function, one can make the welfare approxima-
tion arbitrarily bad (indeed, even undefined) by subtracting a constant from each player’s
valuation. Thus, if valuation functions may be negative, we cannot meaningfully optimize
the loss in social welfare.

However, when valuation functions are known to be nonnegative, the following lemma
shows that the worst-case welfare approximation is bounded:

Lemma 24 The reduction MIDRtoMech(A, γ) obtains an αW = mini Prπ(i ∈M) = 1−γ
approximation to the social welfare, and there is an allocation function A and bid b such that
this bound is tight.
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The idea for the lower bound is that the sum of welfare of bidders in M cannot be lower
at A(b̂M) than at A(b̂[n]) because that would imply A did not maximize the social welfare of
bidders in M at b̂M . The worst case scenario occurs when one player receives all the welfare.
The proof is below.

Using this lemma, we can show that MIDRtoMech(A, γ) is optimal:

Theorem 25 The reduction MIDRtoMech(A, γ) minimizes payment variance and worst-
case payments among all reductions that achieve a welfare approximation of at least αW =
1− γ.

Proof of Lemma 24. The expected social welfare of the single-call mechanism, where the

expectation is over the randomness in the resampling function is given by E
[∑

j∈[n] bj(A(b))
]
.

We now prove the required lower bound on this quantity.

E

∑
j∈[n]

bj(A(b))

 =
∑
j∈[n]

∑
M⊆[n]

π(M)bj(A(b̂M))

=
∑
M⊆[n]

π(M)
∑
j∈[n]

bj(A(b̂M))

≥
∑
M⊆[n]

π(M)
∑
j∈M

bj(A(b̂M))

≥
∑
M⊆[n]

π(M)
∑
j∈M

bj(A(b̂[n]))

=
∑
j∈[n]

Pr
π

(j ∈M)bj(A(b̂[n]))

≥
(

min
j∈[n]

Pr
π

(j ∈M)

)∑
j∈[n]

bj(A(b̂[n]))

=

(
1−max

j∈[n]
Pr
π

(j 6∈M)

)∑
j∈[n]

bj(A(b̂[n])) .

Finally, we observe that this is tight. Consider a valuation and allocation function pair
for which, every agent other than some agent j has a zero value for every outcome, and agent
j has a non-zero value only for those outcomes that were chosen taking j into consideration,
i.e.:

bk(A(b̂M)) =


0, k 6= j

0, j /∈M
1, otherwise

When j = argmaxk∈[n] Prπ(k /∈M), the preceding bound is tight.
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Lemma 26 Let π be a distribution such that maxi,M cπi (M) < maxi,M cπ̄i (M). Then

max
i

Pr
π

(i /∈M) > max
i

Pr
π̄

(i /∈M) .

Proof: Let c̄ = maxi,M cπ̄i (M). Note that for all M |i 6∈ M , cπ̄i (M) = π̄(M∪{i})
π̄(M)

= c̄. It follows

by algebra that
∑
M|i/∈M π̄(M∪{i})∑
M|i/∈M π̄(M)

= c̄ and therefore by the conditions of the lemma

max
i,M

cπi (M) <

∑
M |i/∈M π̄(M ∪ {i})∑

M |i/∈M π̄(M)
. (4.6)

Next we have,

max
i,M

cπi (M) ≥ max
M

cπi (M) ≥ max
M |i/∈M

π(M ∪ {i})
π(M)

≥
∑

M |i/∈M π(M ∪ {i})∑
M |i/∈M π(M)

(4.7)

Combining (4.6) and (4.7) gives∑
M |i/∈M π(M ∪ {i})∑

M |i/∈M π(M)
<

∑
M |i/∈M π̄(M ∪ {i})∑

M |i/∈M π̄(M)
(4.8)

Note that since π and π̄ are probability distributions, the sum of the numerator and denom-
inator of both the LHS and the RHS of (4.8) equals 1. Thus, it immediately follows that
the denominator of the LHS is larger than the denominator of the RHS, i.e.,∑

M |i/∈M

π(M) >
∑

M |i/∈M

π̄(M) (4.9)

Inequality (4.9) when restated, reads as

Pr
π

(i /∈M) > Pr
π̄

(i /∈M) .

But since the above inequality is true for all i, and the RHS of the above inequality is
the same for all i (namely the parameter µ by which the reduction is parametrized), the
statement of the lemma follows.

Proof of Theorem 25. By Lemma 24, the worst case loss in social welfare of a distribution π
is given by

1− απ = max
i

Pr
π

(i 6∈M) .

For worst-case payments, the contrapositive of Lemma 26 precisely says that if 1 − απ ≤
1−απ̄, then the largest payment maxM,i c

π
i (M) ≥ maxM,i c

π̄
i (M), thus proving that any other

reduction will be worse.
For payment variance, arguing along the lines of Theorem 21 again says that variance

will be minimized when π is an independent distribution and Pr(i ∈ M) is the same for all
i. Since π̄ is precisely the distribution that does this, it follows that it is optimal.
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Optimizing Risk vs. Revenue

Our next lemma implies that a lower bound on the factor of approximation to revenue is
equivalent to a lower bound on precision.

Lemma 27 The reduction MIDRtoMech(A, γ) obtains an αR = αP = π([n]) = (1 − γ)n

approximation to the revenue, and this is tight.

Lemma 27 shows that the revenue approximation αR is the same as the precision αP
for the reduction MIDRtoMech(A, γ). Since Theorem 23 says that MIDRtoMech(A, γ)
optimizes payments with respect to precision, it similarly follows that it optimizes payments
with respect to revenue:

Theorem 28 The reduction MIDRtoMech(A, γ) minimizes payment variance and the
worst-case payment among all reductions that guarantee an αR = (1− γ)n approximation to
revenue.

Proof of Lemma 27. For any b with non-negative valuations, the revenue under a single call
reduction will be

∑
i∈[n]

E[Pi] =
∑
i∈[n]

∑
M⊆[n]

π(M)

(∑
k 6=i

bk(A(b̂M\{i}))−
∑
k 6=i

bk(A(b̂M))

)

≥ π([n])
∑
i∈[n]

(∑
k 6=i

bk(A(b̂[n]\{i}))−
∑
k 6=i

bk(A(b̂[n]))

)

where
∑

i∈[n]

(∑
k 6=i bk(A(b̂[n]\{i}))−

∑
k 6=i bk(A(b̂[n]))

)
is the revenue generated by A under

VCG prices. Thus, any distribution π(M) gives an α = π([n]) approximation to the revenue.
To see that this is tight, consider the following allocation function:

bi(A(b̂M)) =


1
n

M = [n]
1

n−1
i ∈M but M 6= [n]

0, otherwise.

The revenue under VCG prices is
∑

i∈[n]

(∑
k 6=i bk(A(b̂[n]\{i}))−

∑
k 6=i bk(A(b̂[n]))

)
, which

is n(n−1
n−1
− n−1

n
) = 1.
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Under any single-call reduction, the revenue will be given by

∑
i∈[n]

E[Pi] =
∑
i∈[n]

∑
M⊆[n]

π(M)

(∑
k 6=i

bk(A(b̂M\{i}))−
∑
k 6=i

bk(A(b̂M))

)

=
∑
i∈[n]

π([n])

(∑
k 6=i

bk(A(b̂[n]\{i}))−
∑
k 6=i

bk(A(b̂[n]))

)

=
∑
i∈[n]

π([n])

(
1− n− 1

n

)
= π([n]) .

4.5 A Single-Call Application — PPC AdAuctions

Pay-per-click (PPC) AdAuctions are a prime example of mechanisms in which uncertainty
can destroy truthfulness. There is a deep literature on truthful ad auctions, much of which
makes a powerful assumption: the likelihood that a user clicks in any given setting is a
commonly-held belief. In reality, this simply is not true. Auctioneers make their best effort
to estimate the likelihood of a click; however, anecdotal evidence [50] suggests that advertisers
manipulate their bids according to the perceived accuracy of the auctioneer’s estimates. As
we will illustrate in this section, even if the auctioneer’s estimates are good enough to (say)
maximize welfare given the current bids, they are not sufficient to compute truthful prices.
We show that single-call mechanisms can recover truthfulness in PPC ad auctions in spite
of these conflicting beliefs.

In a standard PPC ad auction, n advertisers compete for m� n slots. The value to an
advertiser depends on the likelihood of a click, called the click-through-rate (CTR) c, and
the value to the advertiser once the user has clicked, the value-per-click v. The expected
value to an advertiser is thus cv. The auctioneer’s job is to assign advertisers to slots and
compute per-click payments — bidders are only charged when a click occurs. Both tasks
require knowing the CTRs for common objectives like welfare or revenue maximization, so
the auctioneer must also maintain estimates of the CTRs, which we denote by c′.

Researchers generally acknowledge that, in reality, both c and v may depend arbitrarily
on the outcome — they certainly depend on the quality and relevance of the particular
ad being shown, but they also depend on where the ad is shown and on which other ads
are shown nearby. However, for analytical tractability, the parameters c and v are often
assumed to have a very restricted structure. We discuss two different structures to illustrate
the pervasiveness of the problem caused by estimation error and to show how different single-
call reductions may be applied.
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Outcome-Independent Values and Separable CTRs In the ad auction literature, it
is common to assume that a bidder’s value-per-click vi is independent of the assignment
and that the CTR is separable, that is, it takes the form c = αjβi, where βi depends only
on the ad and αj depends only on the slot j ∈ [m] where the ad is shown. Unfortunately,
even in this restricted setting, estimation errors may break the truthfulness of VCG prices.
The following example shows that even if the auctioneer’s estimates correctly identify the
welfare-maximizing allocation, they may not yield truthful prices, even in the special case
where βi = 1:

Example 6 Consider a 2-slot, 2-advertiser setting with CTRs cj and bids bi. Assume that
b1 > b2 and c1 > c2, so that the welfare-optimizing assignment is to assign ad-1 to slot-1 and
ad-2 to slot-2, i.e.,

c1b1 + c2b2 ≥ c1b2 + c2b1 . (4.10)

The auctioneer wishes to optimize welfare, so he uses c′j to implement the VCG allocation.
It is quite plausible that maximizing welfare w.r.t c′j results in the same welfare maximizing
allocation, namely given (4.10), it is not unreasonable to assume that the following is true if
the auctioneer’s estimates are good enough:

c′1b1 + c′2b2 ≥ c′1b2 + c′2b1 .

However, we will show that this is not enough to guarantee truthfulness.
We show that advertiser-1 may have an incentive to lie. According to the estimates c′j,

The expected VCG payment should be c′1b2 − c′2b2. Since advertiser 1 will only be charged
when he actually receives a click, the price-per-click charged will be

p1 =
1

c′1
[c′1b2 − c′2b2] .

and the expected utility to bidder i will be

u1 = c1

(
b1 −

1

c′1
[c′1b2 − c′2b2]

)
,

where the extra c1 gets multiplied because the utility is non-zero only upon a click, which
happens with probability c1.

Now, for example, let the inaccurate c′j be as follows: c′1 = αc1, c′2 = c2 where α > 1.
Notice that in this example we always have

αc1b1 + c2b2 ≥ αc1b2 + c2b1

and thus the mechanism will always maximize welfare in spite of the estimation errors.
The utility of advertiser-1 will be

u1 = c1

(
b1 −

1

αc1

[αc1b2 − c2b2]

)
.
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Now, suppose advertiser-1 decides to lie and bid zero, he gets the second slot, pays zero, and
gets utility of c2b1. Lying is clearly profitable if

c2b1 > c1

(
b1 −

1

αc1

[αc1b2 − c2b2]

)
.

Rearranging, lying is profitable if

αc1b1 + c2b2 < αc1b2 + αc2b1 (4.11)

It is quite possible that lying might be profitable, that is inequality (4.11) holds true. For
example, if c1 = 0.1, c2 = 0.09, b1 = 1.1, b2 = 1, and α = 1.1, payments computed using c′j
are nontruthful, even though the mechanism always picks the welfare-maximizing assignment
for any α > 1.

In the language of allocations and payments, truthfulness is broken because the auctioneer
only knows an estimate of A and thus does not have enough information to compute true
VCG prices. However, once ads are shown, clicks may be measured, giving an unbiased
estimate of bidders’ values. Unfortunately, this can only be done once — since the auctioneer
only has one opportunity to show ads to the user, these unbiased estimates can only be
measured under a single advertiser-slot assignment. Fortunately, these unbiased estimates are
exactly the information required to compute truthful payments using a single-call mechanism.

Since a player’s bid bi is merely its value-per-click vi, this version of a PPC ad auction
is a single-parameter domain and we can apply the result of [9]. Their result says that we
can turn any monotone allocation rule into a truthful-in-expectation mechanism — maxi-
mizing welfare subject to estimates α′j and β′i is a monotone allocation rule as long as the
estimates α′j have the same order as αj (i.e. α′j1 ≥ α′j2 if αj1 ≥ αj2). Thus the mechanism
SPtoMechBKS(APPC , γ) of [9] (we define the mechanism formally in Section 4.6) gives
a truthful mechanism for all propered ordered estimates of α’s.

Theorem 29 Consider a single-parameter PPC auction with separable CTRs and let APPC

be the allocation rule that maximizes welfare using estimated CTR parameters α′j and β′i,
where the estimates α′j are properly ordered. Then SPtoMechBKS(APPC , γ), the single-
call reduction of [9], gives a mechanism that is truthful in expectation and has expected welfare
within a factor of (1− γ)n of APPC.

Outcome-Dependent Values and CTRs While most research uses single-parameter
models for analytical tractability, an advertiser’s value-per-click v really depends on the
advertiser-slot assignment chosen by the auctioneer as noted earlier. As in the preceding
single-parameter setting, estimated CTRs are insufficient to guarantee truthfulness; however,
the reduction of [9] no-longer applies in such a multi-parameter domain — we show how our
MIDR single-call reduction can be used to recover truthfulness.

To capture the dependence on the advertiser-slot assignment, we assume that a bidder’s
CTR ci,j and value-per-click vi,j depend arbitrarily on both the bidder i and the slot j.
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Since the only allocation rules that have truthful prices in general multi-parameter domains
are MIDR, we assume that the auctioneer can generate a MIDR allocation, specifically we
assume the auctioneer can query an oracle to determine the allocation that maximizes the
welfare of any set of bidders under the actual bid b (but not necessarily for an arbitrary bid
b) and apply our MIDR reduction in Section 4.4 to obtain the following:

Theorem 30 Consider a multi-parameter PPC auction where a bidder’s value-per-click vi,j
depends on the bidder and the slot. Let APPC be an allocation rule that chooses the advertiser-
slot assignment returned by the welfare-maximizing oracle described above. Then the mech-
anism MIDRtoMech(APPC , γ) is truthful in expectation and approximates the welfare of
APPC to within a factor of (1− γ).

4.6 Single-Parameter Reductions

In this section, we characterize truthful reductions for single-parameter domains and show
that the construction of [9] is optimal. Theorem 31 characterizes all reductions that are
truthful for an arbitrary monotone, bounded, single-parameter allocation function A. Our
characterization is more general than the self resampling procedures described by Babaioff
et al. and shows that a wide variety of probability measures may be used to construct
a truthful reduction. Theorem 33 shows that the construction given in Babaioff et al. is
optimal among such reductions for a fixed bound on the precision, welfare approximation,
or revenue approximation of the reduction.

Generalization. Both Theorem 31 and Theorem 33 assume that the resampling measures
are “nice” for simplicity in exposition. See Theorem 37 in Section 4.7 for the fully general
version of Theorem 31, and Theorem 57 in Appendix B.1 for the fully general version of
Theorem 33.

As in the MIDR setting, truthful payments give intuition for the structure of a single-call
reduction. As noted in Section 4.2, payments are truthful if and only if they are given by
the Archer-Tardos characterization:

pi(b) = biAi(b)−
∫ bi

0

Ai(u, b−i)du . (4.12)

Loosely speaking, this says “charge i the value she receives minus what she would expect
if she lowered her bid.” Thus, a single call reduction should, with some probability, lower
agents’ bids to compute the value of allocation function at (u, b−i) for u ≤ bi.

Characterizing Single-Call Reductions

For the sake of intuition, we start with the special case that the resampling measure µb has
a nicely behaved density representation fb(b̂) (the resampling density) that is continuous
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in b̂ and b. The proof for arbitrary measures µb requires significant measure theory and is
deferred until Theorem 37 of Section 4.7.

Define the coefficients cfi (b̂, b) as cfi (b̂, b) = 1− 1
bi

∫ bi
0

fu,b−i (b̂)

fb(b̂)
du when bi 6= 0, and to be 0

when bi = 0. We characterize truthful reductions as follows:

Theorem 31 A normalized single-parameter reduction (f, {λi}) for the set of all monotone
bounded single-parameter allocation functions satisfies truthfulness, individual rationality and
no positive transfers in an ex-post sense if and only if the following conditions are met:

1. The resampling density fb is such that the single-call mechanism’s randomized alloca-
tion procedure Ai(b) is monotone in expectation, i.e., for all agents i, for all b, and
b′i ≥ bi, Eb̂∼fb [Ai(b

′
i, b−i)] ≥ Eb̂∼fb [Ai(b)]. (See below.)

2. The resampling density fb is such that fb(b̂) 6= 0 if
∫ bi

0
fu,b−i(b̂)du 6= 0.9

3. The payment functions λi(A(b̂), b̂, b) satisfy: λi(A(b̂), b̂, b) = bic
f
i (b̂, b)Ai(b̂) almost surely,

i.e. for all b̂ except possibly a set with probability zero under fb.

Proof: (See Section 4.7 for the proof when µb is an arbitrary measure.)

Necessity. The first condition, that A must be monotone in expectation, follows directly
from Archer-Tardos characterization of truthful allocation functions. The second and third
conditions, as we prove below, are necessary for the expected payment to take the form
required by the Archer-Tardos characterization.

The allocation function A is a single-parameter allocation function, so the Archer-Tardos
characterization gives truthful prices if they exist:

E[Pi] = biEb̂∼fb [Ai(b)]−
∫ bi

0

Eb̂∼fu,b−i
[Ai(u, b−i)]du

= biEb̂∼fb [Ai(b̂)]−
∫ bi

0

Eb̂∼fu,b−i
[Ai(b̂)]du

= bi

∫
b̂∈Rn

Ai(b̂)fb(b̂)db̂−
∫ bi

0

∫
b̂∈Rn

Ai(b̂)fu,b−i(b̂)db̂du .

Rearranging, where changing the order of integration may be justified by Tonelli’s theorem,
gives

E[Pi] =

∫
b̂∈Rn

fb(b̂)biAi(b̂)

(
1− 1

bi

∫ bi

0

fu,b−i(b̂)

fb(b̂)
du

)
db̂ .

By construction, we can express the expected price as

E[Pi] =

∫
b̂∈Rn

fb(b̂)λi(A(b̂), b̂, b)db̂ .

9This condition effectively requires cfi (b̂, b) to be finite.
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Thus truthfulness in expectation necessarily implies∫
b̂∈Rn

fb(b̂)λi(A(b̂), b̂, b)db̂ =

∫
b̂∈Rn

fb(b̂)biAi(b̂)

(
1− 1

bi

∫ bi

0

fu,b−i(b̂)

fb(b̂)
du

)
db̂ . (4.13)

Note that proving the necessity of condition three in the theorem is equivalent to proving
that the integrands in the LHS and the RHS of (4.13) are equal almost everywhere. That
is, we have to show that the only way for Equation (4.13) to hold for all monotone bounded
A is when the integrands are equal almost everywhere. To show this, it is sufficient to show
that Equation (4.13) must still hold if we restrict the range of integration to an arbitrary
rectangular parallelepiped (hence forth called as rectangle) S ⊆ Rn (see why this is enough in
Section 4.7 for a more general setting), that is, it is sufficient to show that for all rectangles
S ⊆ Rn

∫
b̂∈S

fb(b̂)λi(A(b̂), b̂, b)db̂ =

∫
b̂∈S

fb(b̂)biAi(b̂)

(
1− 1

bi

∫ bi

0

fu,b−i(b̂)

fb(b̂)
du

)
db̂ . (4.14)

Showing (4.14) would be straight-forward if we are given that (4.13) holds for all A — we
could take any A and make it zero for all points not in S, and then (4.13) immediately
implies (4.14). However (4.13) is guaranteed to be true only for monotone bounded A, since
those are the allocation functions that could possibly be input to our reduction. To see that
it is still true when (4.13) is only guaranteed for monotone bounded A, define the function
1S(b̂) as

1S(b̂) =

{
1, b̂ ∈ S
0, otherwise.

Observe that 1S can be written as 1S(b̂) = 1+
S (b̂) − 1−S (b̂) where 1+

S and 1−S are both {0, 1},
monotone functions. Moreover, the functions A+(b) = 1+

S (b)A(b) and A−(b) = 1−S (b)A(b) are
also monotone, and they agree with A on S. If we plug A+ and A− into (4.13) and subtract
the results, we get precisely (4.14). Thus condition three is necessary.

For the necessity of condition two, note that if it were not to hold, the coefficients cfi
will become −∞, and hence the payments as defined in condition three will not be finite.
Clearly finiteness of payments is a requirement.

This proves that all three conditions in the theorem are necessary for truthfulness.

Sufficiency. We now show that the three stated conditions are sufficient. In a single-
parameter setting, for a mechanism to be truthful, we need the allocation function to be
monotone in expectation and the payment function to satisfy the Archer-Tardos payment
functions. Condition one guarantees that the allocation function output by the single-call
reduction is a monotone in expectation allocation function. It remains to show that the
second and third conditions result in payments that agree with Archer-Tardos payments.
Given condition two, finiteness of payments as defined in condition three is satisfied. All we
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need to show is that under the formula of λi(A(b̂), b̂, b)) described in condition three, the
single-call payments match in expectation with Archer-Tardos payments, i.e., (4.13) holds.

Since cfi (b̂, b) = 1− 1
bi

∫ bi
0

fu,b−i (b̂)

fb(b̂)
du, taking

λi(A(b̂), b̂, b) = bic
f
i (b̂, b)Ai(b̂) a.s.

trivially satisfies (4.13), implying that the reduction is truthful.

Unfortunately, our assumption that µb has a density representation is unreasonable. Most
significantly, one would expect b̂ = b with some nonzero probability, implying that µb would
have at least one atom for most interesting distributions. In particular, the distribution used
in the BKS transformation has such an atom, so it cannot be analyzed in this fashion.

To handle general measures µb we apply the same ideas in Section 4.7 using tools from
measure theory.

The BKS Reduction for Positive Types

The central construction of Babaioff, Kleinberg, and Slivkins [9] is a reduction for scenarios
where bidders have positive types.10

Their resampling procedure (implicitly defining µb) is described Algorithm 7. In the
language of our characterization, the coefficients cBKSi are

cBKSi (b̂, b) =

{
1, b̂i = bi

1− 1
γ

otherwise.

They proved that SPtoMechBKS(A, γ) is truthful. This fact can be easily derived from
Theorem 31:

Theorem 32 (Babaioff, Kleinberg, and Slivkins 2010.) For all monotone, bounded, single-
parameter allocation rules A, the single-call mechanism given by SPtoMechBKS(A, γ)
satisfies truthfulness and no positive transfers in an ex-post sense and is ex-post universally
individually rational.

Optimal Single-Call Reductions

Analogous to our MIDR construction, we show that, the BKS construction for positive types
is optimal with respect to precision, welfare, and revenue as defined in Section 4.3. Using
our characterization from Theorem 31, the bid-normalized payments we wish to optimize
will be ∑

j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))
=
cµi (b̂, b)biAi(b̂)

biAi(b̂)
= cµi (b̂, b) .

10They also give a reduction that applies to more general type spaces, but we do not state it here.
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ALGORITHM 7: SPtoMechBKS(A, γ) — The BKS reduction for single-parameter
domains

input : Bounded, monotone allocation function A.
output: Truthful-in-expectation mechanism M = (A, {Pi}).

1 Solicit bids b from agents;
2 for i ∈ [n] do

with probability 1− γ
Set b̂i = bi;

otherwise

Sample xi uniformly at random from [0, b̂i];

Set b̂i = bix
1

1−γ
i ;

3 Realize the outcome A(b̂);
4 Charge payments

λi(A(b̂M), b̂M , b) = biAi(b̂)×

{
1, b̂i = bi
1−γ
γ
, b̂i < bi

;

Thus, optimizing variance of normalized payments is equivalent to optimizing maxi Varb̂∼µbc
µ
i (b̂, b),

and optimizing the worst-case normalized payment is equivalent to optimizing supi,b̂ |c
µ
i (b̂, b)|.

For this section, we make a “nice distribution” assumption that for any u 6= bi, Pr(b̂i =
u|b) = 0. That is, if we compute the marginal distribution of b̂i, the only bid b̂i that has an
atom is bi (other bids only have positive density). We handle the general case with full proofs
in Appendix B.1. The generalized versions of Theorem 33, Lemma 34 and Theorem 35 are
Theorem 57, Lemma 58 and Theorem 59 in Section B.1.

Our main result is that the BKS transformation is optimal:

Theorem 33 The single-call reduction SPtoMechBKS(A, γ) optimizes the variance of
bid-normalized payments and the worst-case bid-normalized payment for every b subject to a
lower bound α = (1−γ)n ∈ (1

e
, 1) on the precision, the welfare approximation, or the revenue

approximation.

We prove Theorem 33 in two steps: Lemma 34 and Theorem 35. Lemma 34 shows that
the three metrics we study are equivalent for interesting reductions in the single parameter
setting:

Lemma 34 For α > 1
e

and n ≥ 2, a reduction that optimizes the variance of normalized

payments or the maximum normalized payment subject to a precision constraint of Pr(b̂ =
b|b) ≥ α also optimizes the maximum payment subject to a welfare or revenue approximation
of α.
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Proof: (Sketch. The full proof is in Appendix B.1.) Consider the following allocation
function:

Ai(b) =

{
1, b ≥ b̄

0, otherwise.

Intuitively, a reduction should not resample to higher bids because Archer-Tardos payments
do not depend on higher bids, and hence no useful information is obtained through raising
bids. However, if a reduction never raises bids (i.e. Pr(b̂ ≤ b|b) = 1), then the welfare and
revenue of a single-call reduction will both be precisely Pr(b̂ = b|b) if we consider the above
mentioned A at a bid of b̄.

Thus, to prove Theorem 33, it is sufficient to prove that the BKS reduction optimizes
precision.

Theorem 35 The single-call reduction SPtoMechBKS(A, γ) optimizes the variance of
normalized payments and the worst-case normalized payment among reductions with a pre-
cision of at least αP = (1− γ)n > 1

e
.

Proof: (Sketch. The full proof is in Appendix B.1.) When Pr(b̂ = b|b) is large, the mechanism
extracts a modest payment from i when b̂i = bi and pays a large rebate otherwise. Thus, we
bound inf b̂,i c

µ
i (b̂, b). Let πµ(M, b) be the probability (given b) that b̂i = bi for all i ∈M and

b̂i < bi for all i 6∈M . Then the key step is to prove the following lower bound on inf cµi :

inf
b̂
cµi (b̂, b) ≤ −π

µ(M ∪ {i}, b)
πµ(M, b)

.

Notably, this bound takes the same form as the truthful payment coefficients for MIDR
reductions. Applying the same logic as Theorem 23 shows that the BKS transformation is
optimal.

4.7 Characterizing Reductions for Single-Parameter

Domains

In this section, we generalize the single-parameter characterization theorem from Section 4.6
to reductions using arbitrary measures µb. We refer the reader to Appendix B.2 for some
background and definitions from measure theory.

Before we begin, we must formalize some properties of the functions A and the measures
µb. The following assumptions would typically be implicit in Algorithmic Mechanism Design;
however, it is necessary that they be formalized for some of the tools in our proof. We assume
the following:
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1. Any allocation function A that the reduction receives as input (as a black box) is a
Borel measurable function, i.e., each of the Ai’s as a function from Rn → R+ is a
bounded Borel measurable function.

2. For every b, the resampling measure µb(·) is a Borel probability measure.

3. The function mapping the bid b to the resampling measure µb(·) is measurable w.r.t
to the Borel σ-algebra on the space of Borel probability measures over Rn.

First, we use the measure µb(·) to define a signed measure νb,i(B) = biµb(B)−
∫ bi

0
µu,b−i(B)du

which has the property:∫
b̂∈Rn

Ai(b̂)dνb,i = biEb̂∼µb [Ai(b̂)]−
∫ bi

0

Eb̂∼µu,b−i
[Ai(b̂)]du ,

that is, integrating Ai with respect to νb,i is equivalent to computing the Archer-Tardos
prices.

Lemma 36 The function νb,i(B) = biµb(B) −
∫ bi

0
µu,b−i(B)du is a finite signed measure

satisfying ∫
b̂∈Rn

Ai(b̂)dνb,i = biEb̂∼µb [Ai(b̂)]−
∫ bi

0

Eb̂∼µu,b−i
[Ai(b̂)]du

for any bounded Ai

Proof: First, we show that νb,i(B) is a finite signed measure. Since µb is a probability
measure, we have µb(B) ≤ 1 for all B. Thus, νb,i(B) is well-defined and finite for all Borel
sets B (note that the integral is well defined by our assumptions on the measurability of µb).
From this it is easy to see that νb,i(∅) = 0 because µb(∅) = 0. It remains to show countable
additivity, i.e.

∑∞
k=1 νb,i(Bk) = νb,i(∪kBk), which follows because integrals obey countable

additivity for nonnegative functions (see Fact 77):

∞∑
k=1

νb,i(Bk) =
∞∑
k=1

(
biµb(Bk)−

∫ bi

0

µu,b−i(Bk)du

)
=
∞∑
k=1

biµb(Bk)−
∫ bi

0

∞∑
k=1

µu,b−i(Bk)du

= biµb(∪kBk)−
∫ bi

0

µu,b−i(∪kBk)du = νb,i(∪kBk) .

Second, we show from first-principles that integrating Ai with respect to νb,i is equiva-
lent to calculating the Archer-Tardos prices for Ai. We begin by showing this equality for
charateristic functions over Borel measurable sets. The proof for more general functions (in
our case Ai) can be built-up from characteristic functions precisely as in the definition of an
integral, so we omit it (see Definition 46). Let 1B be the characteristic function of a Borel
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measurable set. By definition of an integral,
∫

1Xdν = ν(X), and plugging in we observe
the desired equality:

biEb̂∼µb [1B(b̂)]−
∫ bi

0

Eb̂∼µu,b−i
[1B(b̂)]du = biµb(B)−

∫ bi

0

µu,b−i(B)du

=

∫
b̂∈Rn

1B(b̂)dνb,i .

The general version of the characterization theorem shows that the payment functions
precisely correspond to the density function ρµb,i(b̂) relating νb,i to µb (i.e. the Radon-Nikodym
derivative of νb,i with respect to µb — its existence is guaranteed by the absolute continuity
that figures in the characterization theorem 37 below). In this setting, we can equivalently
define the associated coefficients cµi (b̂, b) as the function that satisfies

bic
µ
i (b̂, b) = ρµb,i(b̂) .

Theorem 37 (Characterizing single-call reductions) (Generalization of Theorem 31.)
A single-call single-parameter reduction (µ, {λi}) for the set of all monotone bounded

single-parameter allocation functions satisfies truthfulness, individual rationality, and no pos-
itive transfers in expectation if and only if the following conditions are met:

1. The distribution µ is such that for all monotone, locally bounded A, the randomized
allocation procedure Ai(b) is monotone in expectation, i.e., for all agents i, for all b,
and b′i ≥ bi, E[Ai(b)] ≤ E[Ai(b′, b−i)] (see Lemma 39 for further discussion).

2. For all i, and for all Borel measurable sets B, the measure µb(B) 6= 0 if
∫ bi

0
µu,b−i(B)du 6=

0, or equivalently, the signed measure νb,i is absolutely continuous w.r.t. measure µb.

3. The payment functions λi(A(b̂), b̂, b) satisfy

λi(A(b̂), b̂, b) = ρµb,i(b̂)Ai(b̂) + λ0
i (b̂, b) a.s.

where Eb̂∼µb [λ
0
i (b̂, b)] = 0 and ρµb,i(b̂) is the density function relating νb,i to µb.

(Almost surely, or a.s., means that it holds everywhere except for a set with measure
zero under µb(·).)

Proof:
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Necessity We first prove the necessity of the three conditions above. The first condition,
that A is monotone in expectation, follows directly from Archer-Tardos characterization
of truthful allocation functions. The second and third conditions, as we prove below, are
necessary for the expected payment to take the form required by the Archer-Tardos charac-
terization.

We now write down the truthful payments give by the Archer-Tardos characterization,
and rewrite it using the signed measure νb,i.

E[Pi] = biE[Ai(b)]−
∫ bi

0

E[Ai(u, b−i)]du

= biEb̂∼µb [Ai(b̂)]−
∫ bi

0

Eb̂∼µu,b−i
[Ai(b̂)]du

=

∫
b̂∈Rn

Ai(b̂)dνb,i .

where the last equality follows from the definition of the signed measure νb,i, and Lemma 36.
By definition of the reduction, we can write the expected payment as:

E[Pi] =

∫
b̂∈Rn

λi(A(b̂), b̂, b)dµb .

Equating these two gives∫
b̂∈Rn

λi(A(b̂), b̂, b)dµb = E[Pi] =

∫
b̂∈Rn

Ai(b̂)dνb,i . (4.15)

Next, we define the normalized payment function λ̃ as

λ̃i(A(b̂), b̂, b) = λi(A(b̂), b̂, b)− λi(0n, b̂, b) .

By (4.15),
∫
b̂∈Rn λi(0

n, b̂, b)dµb(B) = 0, and therefore we may write∫
b̂∈Rn

λ̃i(A(b̂), b̂, b)dµb =

∫
b̂∈Rn

Ai(b̂)dνb,i .

If the above equality were to hold for all bounded, monotone, measurable allocation
functions A, then by Lemma 38, this implies for all Borel measurable sets X ⊆ Rn:∫

b̂∈X
λ̃i(A(b̂), b̂, b)dµb =

∫
b̂∈X

Ai(b̂)dνb,i . (4.16)

This statement would be intuitive if we allowed Ai to be any function — we could pick
the function A′i(b) = 1X(b)Ai(b), i.e. we could zero Ai except on X, and plug back into the
previous equality. Unfortunately, this A′i is not monotone. The work of Lemma 38 is to show
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that the space of bounded, monotone functions is still sufficiently general as to guarantee
equality for any Borel measurable set X.

Having derived Equation (4.16), we now show how it makes conditions two and three in
theorem necessary. If we substitute the constant function Ai(b) = 1 into (4.16), we see that
for all measurable X ∫

b̂∈X
λ̃i(1

n, b̂, b)dµb =

∫
b̂∈X

dνb,i ,

that is, λ̃i(1
n, b̂, b) satisfies the definition of the derivative of νb,i w.r.t µb, and therefore

ρµb,i(b̂) = λ̃i(1
n, b̂, b). Thus, given that finite payments λ exist it follows that the density

relating νb,i to µb, namely ρµb,i(b̂), also exists and is finite. But given that both µb and νb,i
are finite measures, this also means that νb,i is absolutely continuous w.r.t. µb. If not, then
there exists a Borel measurable set V such that νb,i(V ) 6= 0 but µb(V ) = 0. We run into an
immediate contradiction as follows:

0 =

∫
b̂∈V

ρµb,i(b̂)dµb =

∫
b̂∈V

dνb,i = νb,i(V ) 6= 0.

Thus we have proved that condition two, absolute continuity of νb,i w.r.t. µb, is necessary.

Returning to (4.16), by the definition of ρµb,i(b̂) we can write∫
b̂∈X

λ̃i(A(b̂), b̂, b)dµb =

∫
b̂∈X

Ai(b̂)ρ
µ
b,i(b̂)dµb

∫
b̂∈X

(
λ̃i(A(b̂), b̂, b)− Ai(b̂)ρµb,i(b̂)

)
dµb = 0

for all Borel measurable sets X ⊆ Rn. By a standard argument (Fact 82), this implies

λ̃i(A(b̂), b̂, b)− Ai(b̂)ρµb,i(b̂) = 0

almost surely with respect to µb(B), the third condition. Thus we have shown that all the
three conditions are necessary.

Sufficiency We now show that the three stated conditions are sufficient. In a single-
parameter setting, for a mechanism to be truthful, we simply need the allocation function
to be monotone in expectation, and the payment function must satisfy the Archer-Tardos
payment functions. Condition one guarantees that the allocation function output by the
single-call reduction is a monotone in expectation allocation function. It remains to show
that the second and third conditions result in payments that agree with Archer-Tardos
payments. Given condition two, we see that νb,i is absolutely continuous w.r.t the resampling
measure µb, and thus by Radon Nikodym theorem, the density function ρµb,i(.) is finite and
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exists. All we need to show is that under the formula of λi(A(b̂), b̂, b)) described in condition
three, we have ∫

b̂∈Rn
λi(A(b̂), b̂, b)dµb = biE[Ai(b)]−

∫ bi

0

E[Ai(u, b−i)]du.

Once we substitute the formula for λi(A(b̂), b̂, b) from condition three, this equality follows
from the definition of ρµb,i(·) and νb,i.

Lemma 38 Let µ and ν be finite measures (possibly signed), and let g : Rn
+ ×Rn → R be a

function with g(0, b̂) = 0 satisfying∫
b̂∈Rn

g(A(b̂), b̂)dµ =

∫
b̂∈Rn

Ai(b̂)dν

for all Borel measurable functions A : Rn → Rn
+ where A is bounded and monotone in the

sense that b′ ≥ b⇒ A(b′) ≥ A(b).
Then for any such A and all Borel measurable sets X ⊆ Rn,∫

b̂∈X
g(A(b̂), b̂)dµ =

∫
b̂∈X

Ai(b̂)dν .

Proof: First, assume that the characteristic function of X can be written as the difference of
two {0, 1}monotone functions, that is, 1X(b) = f+(b)−f−(b) where f+ and f− are monotone
functions mapping Rn to {0, 1}. Note that this includes all rectangular parallelepipeds (a
product of open, closed, or half-open intervals).

Define as A+
i (b) = Ai(b) · f+(b) and A−i (b) = Ai(b) · f−(b). Note that for any bounded,

monotone, measurable A, the functions A+ and A− are similarly bounded and monotone.
Therefore the conditions of the lemma imply∫

b̂∈Rn
g(A+(b̂), b̂)dµ =

∫
b̂∈Rn

A+
i (b̂)dν

and ∫
b̂∈Rn

g(A−(b̂), b̂)dµ =

∫
b̂∈Rn

A−i (b̂)dν

Taking the difference, we get∫
b̂∈Rn

(
g(A+(b̂), b̂)− g(A−(b̂), b̂)

)
dµ =

∫
b̂∈Rn

(
A+
i (b̂)− A−i (b̂)

)
dν .

Note that A+ = A− everywhere except on the set X, so the integrands are only nonzero on
X, thus we can replace Rn with X in the integrals:∫

b̂∈X

(
g(A+(b̂), b̂)− g(A−(b̂), b̂)

)
dµ =

∫
b̂∈X

(
A+
i (b̂)− A−i (b̂)

)
dν .
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Now, note that on X, A+ = A and A− = 0. Thus, also using the fact g(A−(b̂), b̂) = 0,
we have ∫

b̂∈X
g(A(b̂), b̂)dµ =

∫
b̂∈X

Ai(b̂)dν ,

as desired.
To show that the lemma holds for all Borel measurable sets X, we observe that it holds for

all rectangular parallelepipeds (a product of open, closed, or half-open intervals) by the above
argument. Since the set of rectangular parallelepipeds is closed under finite intersections, the
lemma applies to all finite intersections of rectangular parallelepipeds, which is the π-system
that generates the Borel σ-algebra of Rn.

Additionally, if the lemma holds for a countable sequence of disjoint sets Xk, then it
clearly holds for their union as well, implying that the sets for which the lemma is true must
be a λ-system.

Therefore, by Dynkin’s π-λ theorem, the λ-system (the sets satisfying the lemma) must
contain all sets in the σ-algebra generated by the π-system (the set of rectangular paral-
lelepipeds) — namely, it must contain all sets in the Borel σ-algebra of Rn. Thus, the lemma
must hold for all Borel measurable sets X.

Monotonicity and µb

Theorem 37 requires µb to be such that Ai(b) is monotone in expectation. The following
lemma gives a necessary condition:

Lemma 39 Let B be a set of bids that is leftward closed with respect to bi, i.e. if b̂ ∈ B,
then (u, b̂−i) ∈ B for all u ∈ (−∞, bi] ∩ Ti. If µb(B) satisfies the monotonicity condition

Pr
(
b̂ ∈ B

∣∣∣ b) = µb(B)

is weakly decreasing in bi. Similarly, if B is rightward closed with respect to bi (i.e. b̂ ∈ B
implies b̂−iu ∈ B for u ∈ [bi,∞)), then Pr(b̂ ∈ B|b) is weakly increasing in bi, and if B is
both rightward and leftward closed with respect to bi then Pr(b̂ ∈ B|b) is constant in bi.

Proof: First, we prove the case where B is rightward closed. For contradiction, let B be a
rightward closed set on which f violates the statement of the lemma for some b and b′i > bi,
i.e.

Pr
(
b̂ ∈ B

∣∣∣ b) = µb(B) > µb′i,b−i(B) = Pr
(
b̂ ∈ B

∣∣∣ b′i, b−i) .

Consider the monotone allocation function

Ai(b) =

{
1, b ∈ B
0, otherwise.
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Noting that the E[A(b)] = µb(B), we have

E[Ai(b′i, b−i)] = µb′i,b−i(B) < µb(B) = E[Ai(b)] .

Thus, under this allocation function, bidder i lowers her expected utility by raising her bid
to b′i, contradicting the monotonicity condition.

Finally, any leftward closed set B is the complement (probabilistically) of a rightward
closed set, therefore Pr(b̂ ∈ B|b) must be weakly decreasing. For a set B that is both left-
ward and rightward closed, the theorem follows because Pr(b̂ ∈ B|b) must be both weakly
increasing and weakly decreasing.
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Part II

Markets
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Chapter 5

Non-Convex Production and
Complexity Equilibria

The convexity assumptions required for the Arrow-Debreu theorem are reasonable and real-
istic for preferences; however, they are highly problematic for production because they rule
out economies of scale. In this chapter, we take a complexity-theoretic look at economies
with non-convex production. It is known that in such markets equilibrium prices may not
exist; we show that it is an intractable problem to achieve Pareto efficiency, the funda-
mental objective achieved by equilibrium prices. The same is true for core efficiency or
any one of an array of concepts of stability, with the degree of intractability ranging from
F∆P

2 -completeness to PSPACE-hardness. We also identify a novel phenomenon that we call
complexity equilibrium in which agents quiesce, not because there is no way for any one of
group of them to improve their situation, but because discovering the changes necessary for
(individual or group) improvement is intractable. In fact, we exhibit a somewhat natural
distribution of economies that has an average-case hard complexity equilibrium.

5.1 Introduction

General Equilibrium Theory studies stable outcomes in markets — outcomes where each
agent is doing as well as he can given the actions of others [65]. In the standard model,
a market consists of consumers with initial endowments (vectors of goods) and preferences
(utility functions), and firms with production sets (specifying what vector(s) of goods can
be produced with each combination of raw materials); consumers own shares in firms.

By far the most studied kind of stable market outcome is the price equilibrium: Each
firm optimizes its profit at market prices, and each consumer optimizes her utility at the
same prices, selling her endowment and purchasing her preferred bundle of goods. Magically,
this uncoordinated activity clears the market: no goods are left unsold, and all demand is
satisfied. Most importantly, the resulting allocation of goods is efficient in the sense of
Pareto: there is no allocation that is better in the sense that it dominates, in terms of
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utility, the allocation achieved via the price mechanism (this is known as the First Theorem
of Welfare Economics).

Price equilibria had been studied by economists since the mid 19th century, but it was not
until 1954 that Arrow and Debreu [5] made the idea irresistibly powerful and attractive by
proving that (under assumptions) an equilibrium price vector is guaranteed to always exist.
This result promises a kind of Arrow-Debreu paradise, where equilibrium is both beneficient
(it achieves Pareto efficiency) and universally guaranteed1. The theory has spawned an
entire area of Economics, and of course more recently a variety of results in Algorithmic
Game Theory, including many algorithms for special cases (see [76], Chapters 5 and 6 for a
survey, as well as [56, 51, 52] for production-specific algorithms).

There are of course wrinkles in General Equilibrium Theory. The existence proof in [5]
is non-constructive, and this has been shown to imply some form of intractability, weaker
than NP-completeness [79, 19]. The basic theorem holds for a very simplified model; in
more realistic models parameters may be stochastic, time-varying, and generation-specific,
among many other complications, and much work has been done addressing such difficulties.
The model also hides tricky externalities (for example, production, or consumption, by one
can harm the environment for all). Many other objections (e.g., that goods are available at
different places and times) can be absorbed in the model by enlarging it. The focus of this
paper is one of the most fundamentally objectionable assumptions of the theory, namely the
convexity assumption for production.2

Convexity in utilities is quite natural: it states that you may draw less pleasure from
your tenth evening dress than you did from your first. In contrast, convexity in production
is very questionable because it rules out economies of scale. In other words, producing
the hundredth airplane cannot, in any way, be easier than producing the first one. In the
absence of this utterly unrealistic assumption — that is to say, in realistic economies —
a price equilibrium may not exist, and thus the First Theorem cannot guarantee Pareto
efficiency: Paradise lost.

Market Equilibrium Theory without Convexity of Production Since price equilib-
ria may not exist in the absence of convexity in production, economists have studied the set
of Pareto optima (which do generally exist). The first work in this line was by Guesnerie [33],
whose stated goal was “to characterize precisely Pareto-optimal states and to examine the
possibility of achieving them in a decentralized economy” (a task which is, as we point out,
unattainable for reasons of complexity). Since then, a vast literature has developed; for two
excellent surveys, see [17, 1] — the first one actually contains a discussion of computation.

1In an excellent Microeconomics textbook [60] one reads after the statement of the First Theorem: “You
should now be hearing choirs of angels and choruses of trumpets. The invisible hand of the price mechanism
produces equilibria that cannot be improved upon.” The author goes on to expose and discuss the many
problems of the theory.

2Convexity in production refers to convexity of the set of net production vectors. For example, if a
firm can produce according to net production (input/output) vectors y1 and y2, then it can also produce
according to any production vector αy1 + (1− α)y2 for α ∈ [0, 1].
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A standard approach is to assume that firms price goods at marginal cost, in other words,
postulate that prices depend on production decisions; this assumption is quite strong and
rather artificial and unrealistic, but it often yields an allocation that is Pareto efficient —
not always, of course. The state of the art in this direction (e.g. the marginal pricing rule
of [16]) still seeks a decentralized model of agent behavior that is guaranteed to achieve
Pareto efficiency. Our results, outlined next, suggest that there are huge computational
impediments in the way of this ambition.

Our Results: Computational Complexity in Markets with Non-Convex Produc-
tion We study markets with non-convex production from the perspective of computational
complexity. To the best of our knowledge, the only other work with a computational flavor
is [86], which employs dimensional communication complexity to differentiate this case from
the convex one: it is shown in [86] that ≈ m · n real numbers are needed to achieve Pareto
efficiency in this case, where m is the number of goods and n the number of agents and firms,
as opposed to only m in the convex case.

We show that the theory of markets with non-convex production is plagued with very
bleak negative complexity results, as many natural concepts of rationality are hard for various
levels of the polynomial hierarchy. We start by showing that computing a Pareto efficient
outcome in a market with non-convex production is F∆P

2 -complete. Economists regard
Pareto efficiency as a sine qua non for any concept of stability or rationality in markets.
Hence, our negative result for the complexity of finding Pareto efficient outcomes is a lower-
bound for any “reasonable” equilibrium concept. Finally, in sections 5.4 and 5.5, we give
similar results for two concepts of stability more sophisticated than Pareto efficiency: It is
FΣP

2 -complete to tell if an allocation is in the core (no coalition of agents has an incentive
to defect and create its own economy). And for a natural models of sequential production,
we show that computing equilibria is F∆P

3 -complete and PSPACE-hard, respectively.
Perhaps most significantly, we show in the process that such economies can have a novel

kind of “equilibrium,” from which deviation may yield tremendous improvement for any and
all agents, but the agents are stuck at a suboptimal solution of a particular instance of an
NP-hard optimization problem. We call such a situation a complexity equilibrium (Definition
27). When agents are at such an equilibrium, standard complexity-theoretic assumptions
imply that no computationally efficient procedure would generally allow them to improve –
indeed, it is even intractable to recognize that improvement is possible. We also present a
somewhat natural average-case NP-hard construction of a complexity equilibrium.

Apart from deliberate complexity-theoretic studies in game theory (e.g. [85]), the only
other natural economic setting we know where computational complexity begets stability is
voting, where outcome manipulation may be computationally intractable (e.g. [81, 36]).

5.2 Foundations and Models

In this section we introduce the standard economic model and relevant complexity classes.
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The Economic Model

We will employ a slightly simplified version of the standard private ownership economy used
in general equilibrium theory [65]. We define an economy E as follows:

Agents: An economy has n agents.

Goods: An economy has m divisible, tradable goods.

Utilities: Each agent i has a utility function ui : Rm → R mapping bundles of goods to
amounts of utility. An agent’s consumption in an economy is specified by a vector of
goods xi ∈ Rm, and her utility is ui(x)i. In general, we assume that ui(x) satisfies
standard assumptions and is efficiently computable. Our hardness results use Leontief
utilities:

u(x) = min
j

xj
αj

,

i.e. goods are demanded in constant proportions specified by the parameters {αj}
(possibly 0).

Endowments: Each agent i is endowed with a quantity of each good, i.e. a vector ei ∈ Rm.

Production: Each firm in the economy is specified by a production function fk : Rm
+ → Rm

+

where fk maps a bundle of input goods to a bundle of output goods3. The behavior
of a production firm may be specified by either the vector of inputs consumed by the
firm xk (in which case the output produced is fk(xk)), or by a net production vector
yk = fk(xk)−xk. Note that the vector xi denotes consumption by agent i and xk denotes
consumption by firm k.

Each agent in an economy owns4 a set of production firms Fi, meaning that agent i
provides the inputs and receives the outputs of production. This is a slight restriction
of the natural extension of the private ownership economy to this domain.

Our reductions use one very simple form of non-convex production function, namely
Leontief production functions with fixed costs. Such a function f takes the form

f(x) = z ·max

(
min
j

(
xj − βj
αj

)
, 0

)
where z is a bundle of goods and βj is a fixed cost of each good required to have positive
production. Interestingly, the addition of fixed costs is sufficient to force the agent to
solve a discretized problem. This will be a key technique in our reductions.

3Standard General Equilibrium Theory specifies a production firm by a set of possible net production
vectors Yk instead of a function fk. However, when modeling economies it is common to use a production
function instead of a production set. While there are scenarios that differentiate the two representations,
e.g. where firms would like to have free disposal, we will not encounter them here.

4In the standard private ownership economy, agents are said to own shares in production firms and receive
the appropriate fraction of the profit. Since we avoid discussion of prices, the total ownership restriction
avoids the issue of cooperative production for which there is already a literature, e.g. [21].
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We make the following assumptions about production in the economy:

1. The production function f(x) is efficiently computable for all x.

2. The total set of production possibilities is closed and bounded. The total set of
production possibilities contains any net production vector that may achieved by
the economy. I.e. it contains a vector y ≥ 0 if and only if there is a set of vectors
{yk ∈ Yk} such that

∑
i ei +

∑
k yk = y.

3. There is no x such that f(x)− x ≥ 0 other than x = 0 (no free lunch).

4. For all f(x), a bounded input x implies a bounded output f(x).

With the exception of the computability assumption, these are standard or weakened
versions of standard assumptions in the economic literature. The efficient computability
assumption is nonstandard insofar as the issue has not been considered.

Finally, we recognize that smoothness is a common assumption in economics. While
the functional forms we use for f (and u) are not smooth, they may be made smooth
without affecting the results in this paper.

We also use the following standard economic vocabulary (see [65]):

Definition 22 An economic allocation (hereafter an allocation) is an assignment (x, y) such
that xi is the vector of goods consumed by agent i and yk is the vector of net outputs for firm
k.

An allocation is feasible if the amount consumed is less than the amount available in the
economy, i.e. ∑

i

xi ≤
∑
i

ei +
∑
k

yk

where yk = fk(xk)− xk for the vector of goods xk used as input to fk.

Definition 23 An economic allocation (x1, y1) is said to be strictly Pareto preferred to
another allocation (x2, y2) if some agent receives more utility in allocation 1 than in allocation
2 and no agent receives less utility.

An allocation (x∗, y∗) is Pareto efficient or Pareto optimal if no feasible allocation is
strictly Pareto preferred to it.

Definition 24 The social welfare W of an allocation (x, y) is the sum of the utilities obtained
by consumers in the economy, i.e.

W =
∑
i

ui(xi).

The particular form of Leontief utilities gives the following:
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Proposition 40 (Free disposal under Leontief utilities.) When utility functions are Leon-
tief, then x′ ≥ x implies ui(x

′) ≥ ui(x).

This allows us to make a key assumption: when an agent has a good ŝ and only one
possible use for that good, no agent may be harmed by assuming that ŝ is applied to that
use.

The Polynomial Hierarchy

Our computational complexity results will locate variations on the General Equilibrium prob-
lem in different classes of the polynomial hierarchy. The relevant portions of the polynomial
hierarchy, ΣP

k and ∆P
k , are defined recursively as

ΣP
0 = ∆P

0 = P

ΣP
k = NPΣPk−1

∆P
k = PΣPk−1

in other words, ΣP
k is equal to NP with an oracle for ΣP

k−1. A prefixed “F” denotes the
corresponding class of functional problems, e.g. FΣP

k .
Krentel [59] defines the related complexity class OptP as the class of problems that may

be expressed as the maximum (or minimum) value along any branch of a nondeterministic
Turing machine. Relevant to our work, he shows that any OptP-complete problem is com-
plete for the class F∆P

2 and shows a similar generalization to F∆P
k [58]. For our purposes,

we use the fact that any OptP problem is in F∆P
2 .

5.3 Computing Pareto Optima

In Economics, Pareto efficiency (the requirement that no allocation is preferred to the current
one by all) is essentially a prerequisite for any reasonable solution concept or prediction. By
showing negative complexity results for finding a Pareto efficient allocation, we lower bound
the complexity of any equilibrium concept that achieves Pareto efficiency. Our first result
classifies the hardness of computing a Pareto efficient allocation:

Theorem 41 Computing a Pareto efficient allocation in an economy with non-convex pro-
duction functions and polynomial-time computable utilities is F∆P

2 -complete.

We prove this theorem after introducing two gadgets.

Gadgets

The proof for Theorem 41 constructs an economy out of the following gadgets:
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The Choice Gadget The choice gadget Choice(α1 · ĵ1, . . . αc · ĵc) enforces indivisibility:
given a set of production options, agent i must choose to produce αk units of good ĵk for
some k ∈ {1, . . . , c} (she cannot produce a convex combination). Specifically, when agent i
has a choice gadget Choice(· · · ), the economy includes the following:

Goods: ŝ, ĵ1, . . . ĵc.

Production: agent i owns firms with the following production functions:

∀ĵk : xĵk = fjk(xŝ) = αk ·max(xŝ − 1, 0)

In words, for each good ĵk, agent i has a production function to turn xŝ units of good ŝ
into αk · (xŝ − 1) units of good ĵk. where the values αk are scalar parameters specified
by Choice(α1 · ĵ1, . . . αc · ĵc).

Endowment: ei,ŝ = 2 , i.e. agent i is endowed with 2 units of ŝ.

This construction ensures that only one good ĵk may be produced in positive quantities.

If xĵkŝ is the amount of ŝ used to produce ĵk, then because of fixed costs xĵk > 0 implies

xĵkŝ > 1. Thus, if two or more goods ĵk is present in positive quantities, xŝ ≥
∑

k x
ĵk
ŝ > 2.

However, agent i has only 2 units of good ŝ, so only one good may be present.
In order to ensure that all of good ŝ is consumed, we stipulate that no agent has any

other use for good ŝ, either as a source of utility in consumption or as an input to production.
Thus, by Proposition 40 (free disposal), we may assume that agent i will use all 2 units of
good ŝ and, therefore, produce exactly αk units of the chosen good ĵk.

The Limit Gadget The limit gadget enables the economy to limit the production of a
specific good ĵ to α units. An instance of Limit(ĵ, α) consists of

Goods: ˆ̃j, r̂, and ĵ.

Production: (owned by agent i):

xĵ = f(xˆ̃j
, xr̂) = min(xˆ̃j

, xr̂) .

Endowment: ei,r̂ = α .

The good r̂ acts as a limiting reagent in the production function f(xˆ̃j
, xr̂) — since the

endowment of r̂ is fixed at α, agent i may produce as much ĵ as desired up to α units.

To enforce this limit, all production functions that produce ĵ are modified to produce ˆ̃j,
thereby forcing all of good ĵ to come from f(xˆ̃j

, xr̂) or an endowment.
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Proof

First, we must note that Pareto optima always exist in our economies:

Proposition 42 Under the general assumptions of Section 5.2, a Pareto efficient allocation
always exists.

Proof: Observe that if an allocation (x′, y′) is strictly Pareto preferred to (x, y), then (x′, y′)
must have a higher social welfare than (x, y). Since the set of net production possibilities
are closed and bounded and utilities are continuous (a standard assumption), it follows that
the maximum social welfare W ∗ is well defined, and any allocation that achieves W ∗ is a
Pareto optimum.

We now prove Theorem 41.
Proof: (Proof of Theorem 41.) First, we show that an efficient allocation may be computed
in F∆P

2 .
Consider the following problem: compute a feasible allocation (x, y) with social welfare

at least W . It may be solved in NP by guessing the goods xi consumed by each agent and
the goods xk used as inputs by each firm. (The assumptions of computability imply that
we may efficiently compute (x, y) and W from the xi and xk vectors.) As in Proposition
42, an allocation with optimal social welfare W ∗ must be Pareto efficient. Thus, a Pareto
efficient allocation may be expressed as the optimum of an NP problem, so it is in OptP and
therefore F∆P

2 .
To show that computing a Pareto efficient allocation is F∆P

2 -hard, we reduce the F∆P
2 -

complete problem Weighted MAX-SAT [59] an economy. Let (Φ =
∧
j φj, {αj}) be a

Weighted MAX-SAT instance with nΦ variables and mΦ clauses, i.e. we desire a boolean
assignment χ to the CNF formula Φ that maximizes

∑
j αjφj(χ). The economy is:

Agents: One agent i for each variable χi and one agent j for each clause φj.

Goods: A utility good γ̂.

For each SAT variable χi: two goods χ̂i and ˆ̄χi.

For each clause φj: one good φ̂j.

Utilities: All agents have u(x) = xγ̂, i.e. they only want γ̂.

Production: Each variable agent i owns:

Choice(χ̂i, ˆ̄χi) ,

and each clause agent j owns:

∀χi ∈ φj : xφ̂j = fφj ,χi(xχ̂i) = mΦ · xχ̂i
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∀χ̄i ∈ φj : xφ̂j = fφj ,χ̄i(x ˆ̄χi) = mΦ · x ˆ̄χi

Limit
(
φ̂j, 1

)
xγ̂ = fγ,φj(xφ̂j) = αj · xφ̂j −

1

2
.

In this economy, a the goods χ̂i and ˆ̄χi represent an assignment to the variables χi. As
argued previously, the choice gadget ensures that the economy will either produce precisely
1 unit of χ̂i or 1 unit of ˆ̄χi. Thus, we say that χi = 1 if χ̂i is present and χi = 0 if ˆ̄χi is
present.

Given the goods χ̂i and ˆ̄χi, the clause agents will use them to produce clause goods φ̂j.

By construction the only way to use χ̂i (resp. ˆ̄χi) is to create the clause good φ̂j for a
clause j which is satisfied by χi = 1 (resp. χi = 0). Conversely, if φj is not satisfied by the

assignment, there is no way to produce φ̂j. Thus, the economy can produce φ̂j if and only if
φj is satisfied by the assignment χ.

The limit gadgets ensure that exactly 1 unit of φ̂j is created for each satisfied clause.
Consider the following production plan: 1

mΦ
units of each χi good are “allotted” to each

clause φj, and if the assignment to χi satisfies φj, then mΦ · 1
mΦ

= 1 units of φ̂j are produced

(otherwise the 1
mΦ

units of the χi good are not used). This produces ≥ 1 units of φ̂j for each

satisfied clause φj and, since each clause good φ̂j is limited to 1 unit, it therefore yields the
maximum production of clause goods possible given the assignment χ. Since the variable
goods χ̂i and ˆ̄χi have no use apart from creating clause goods, we may assume that 1 unit
of φ̂j is present in the economy if and only if φj is satisfied by χ.

Finally, the clause goods are turned into the utility good γ̂. Given that 1 unit of a clause
good will be present if and only if φ is satisfied, the form of fγ,φj(xφ̂j) ensures that the
amount of γ̂ is precisely the weight of the assignment.

Since agents only desire γ̂, it follows that any Pareto efficient allocation must create the
maximum amount of γ̂, i.e. solve the weighted MAX-SAT instance. Thus, computing a
Pareto efficient allocation is F∆P

2 -complete.

Marginal Price Equilibria

Of course some non-convex economies may have price equilibria, or, more generally, have
equilibria in marginal prices; is the previous complexity result irrelevant in such favorable
special cases? Alas, it is hard to recognize economies with equilibria:

Theorem 43 It is NP-hard to distinguish an economy that has no efficient marginal price
equilibria from one that has a price equilibrium.
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Proof: Given a SAT formula Φ, we construct an economy with the following properties: if Φ
is unsatisfiable, the economy has a trivial price equilibrium. If Φ is satisfiable, then we get the
economy in Section 4 of [17] that has no efficient price equilibrium (marginal or regular). The
main trick is to manipulate the set of production possibilities for the two goods â and b̂: when
Φ is satisfiable, we want it to be T = {xâ, xb̂|xâ ≤ 2 and xb̂ ≤ 2 and (xâ ≤ 1 or xb̂ ≤ 1)}
(see the picture in [17]), and when it is unsatisfiable, we want it to be F = {xâ, xb̂|xâ ≤
1 and xb̂ ≤ 1} (this is a convex set, so there will be a price equilibrium).

To accomplish this, we construct a SAT gadget, as above. When Φ is false, we have a
false good. We give agents the technology to turn this good into any quantity of goods â
and b̂ from set F . Since this set is convex (and the other goods, i.e. those used in the SAT
formula are not traded), the economy has a price equilibrium. Now, when Φ is true, we allow
the economy to produce from T as follows: a choice gadget produces one of two intermediate
goods. The first can be used in production of any vector of goods up to â = 1 and b̂ = 2,
while the other can be used in production of any vector of goods up to â = 2 and b̂ = 1. It
is straightforward to integrate the utilities and endowments to make the example work.

5.4 Computing Core Allocations

Pareto efficient allocations are stable in a cooperative sense, that is, with respect to a con-
cept of deviation that requires all agents to cooperate and change their production and
consumption. In this section, we consider allocations that are also stable with respect to
certain selfish defections. A standard concept of rationality in economics is the core. An
allocation is said to be in the core if no coalition would prefer to defect, i.e. no subset of
agents can achieve strictly higher utility among themselves by creating a separate economy
in which they are the only agents [65]. Price equilibria are always in the core; however,
since price equilibria do not exist as such, we potentially lose this property when we lose
convexity. A complexity equilibrium therefore is an allocation from which it is intractable to
find another allocation where some agents do strictly better using only their own endowment
and production technologies.

We find that computing core allocations is harder than computing Pareto optima:

Theorem 44 Computing an allocation in the core is FΣP
2 -complete (and such an allocation

may not exist).

Additionally, if we relax our rationality requirements to include only single-agent devi-
ations, then rational allocations are guaranteed to exist and are as easy to find as Pareto
optima:

Theorem 45 Computing an allocations that is rational with respect to single-agent devia-
tions and Pareto improvement is F∆P

2 -complete.

The proofs for Theorems 44 and 45 follow after we introduce a few more gadgets.
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Gadgets

The SAT Gadget The SATΦ({χ̂i}, { ˆ̄χi}, Φ̂TRUE, Φ̂FALSE) gadget allows an agent i to
evaluate an arbitrary boolean formula Φ to produce exactly one unit of either Φ̂TRUE or
Φ̂FALSE. Let Φ be expressed as a tree T on which each literal in Φ is a leaf and each internal
node represents the AND or OR of its children. Then the SAT gadget is described by the
following subset of an economy:

Goods: For all variables χi in Φ: goods χ̂i and ˆ̄χi.

For each internal node t in tree T : goods t̂ and ˆ̄t.

Let r refer to the root of the tree. Then r̂ and ˆ̄r are synonyms for Φ̂TRUE and Φ̂FALSE.

Production: For all AND nodes t in T with children cj: the functions

xt̂ = ft(x) = min
j
xĉj

∀c̄j : xˆ̄t
= ft̄(x) = xˆ̄cj

and for all OR nodes t with children c1,. . . : two functions

∀cj : xt̂ = ft(x) = xĉj

xˆ̄t
= ft̄(x) = min

j
xˆ̄cj

Finally, we ensure that at most one unit of the true and false good exists with the follow-
ing limit gadgets: Limit(Φ̂TRUE, 1) and Limit(Φ̂FALSE, 1). (When necessary, constant
scalars may be added to ensure that at least one unit of Φ̂TRUE or Φ̂FALSE is created.)

In the manner of previous SAT reductions, this gadget allows direct evaluation of Φ given
sufficient quantities of the goods setting each variable χi. The main differences from our
previous reductions are that this gadget evaluates arbitrary formulas and that it explicitly
signals false as well as true.

The Circle-of-Death Gadget The circle-of-death constructs a group of three agents who
will continually defect unless they are given a particular good. The gadget COD(d̂) includes
the following:

Agents: Three agents 1, 2, and 3.

Goods: For each agent i, there is one source good ŝi and one product good p̂i. There is also
a deactivator good d̂.

Endowments: Agent i is endowed with 2 units of ŝi and nothing else.

Utilities: Agent i has utility function ui(x) = xp̂i .
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Production: Agent i has a production function for producing the bundle

[xp̂i−1
, xp̂i ] = fi(x)

= [2, 1] ·max(min(xŝi−1
− 1, xŝi − 1), 0)

and a “deactivated” production function

xp̂i = fd̂,i(xŝi , xd̂) = min(xŝi , 6xd̂)

The fi are designed with three properties:

1. Because of fixed costs, only one function fi may be used at a time. Thus, if fi is used,
agent i+ 1 will get 0 units of utility, agent i will get 1 unit, and agent i− 1 will get 2.

2. For any choice of fi to use, the function fi+1 gives 2 units of utility to agent i, 1 unit to
agent i+1 and 0 units to agent i−1. Moreover, agents i and i+1, both of whom strictly
prefer using fi+1, have both the endowment and production technology to achieve this
result in isolation. Thus, in the absence of d̂, there is always a defecting coalition.

3. Agents may opt out of the circle-of-death and use the deactivator good to produce
utility if present, but the “losing” agent in the cycle must be able to generate at least
1 unit of utility if the cycle is to be broken, requiring ≥ 1

2
units of d̂.

Consequently, if < 1
2

units of d̂ are available in the economy, then the core is empty, i.e.
some pair of agents would always benefit from defecting.

Binary Counting Gadget The gadget BCG(γ̂, ĵ0, . . . ĵc) treats xĵ0 , . . . xĵc as the binary
representation of a c-bit number x and produces x units of γ̂. It includes the following:

Goods: The “counting” good γ̂ and the c input bit goods ĵk.

Production: For each good ĵk:
xγ̂ = fk(xĵk) = 2k · xĵk .

Generalized Choice Gadget The gadget GChoice(ŝ, x1, . . . xc) is identical to the choice
gadget (see Section 5.3) except that the input good ŝ is provided by the economy and the
choice is over bundles xk instead of individual goods ĵk:

Goods: A source good ŝ and bundles x1,. . .xk over the space of all other goods Rm−1.

Production: Agent i owns firms with the following production functions: Limit(ŝ, 2) and

∀jk : z = fjk(xŝ) = xk max(xŝ − 1, 0) .
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Proofs

Proof: (Proof of Theorem 44.) It is easy to certify that an allocation (x, y) is not in the core
(i.e. testing core membership is in coNP): demonstrate a coalition and an allocation (x′, y′)
such that the coalition strictly prefers (x′, y′) to (x, y). Thus, a core allocation (xc, yc) may
be found in FΣP

2 =FNPNP as follows: guess the core allocation and use an oracle call to
check that it is in the core.

Next, we give the reduction from the FΣP
2 -complete problem Σ2SAT [3]: find x1 such

that ∀x2Φ(x1, x2) = 1. Let nΦ be the number of variables in Φ.
We will describe the economy in stages. The globally relevant parts of the economy

include:

Agents: Two directors A and B.

For each variable χ in x1: two agents χ and χ̄.

Goods: One utility good γ̂i for each agent i.

One deactivator good for a circle-of-death, d̂.

Utilities: Agent i desires his utility good, i.e. ui(x) = xγ̂i .

Production: A circle of death COD(d̂).

Director A wants Φ to be true and director B wants it to be false. The circle of death will
ensure that Φ can never actually be falsified in a core allocation. (Note that the χ agents
are defined only for the variables in x1.)

In the first stage, director B decides whether to pick x1 himself or defer to director A:

Goods: Authorization goods âA and âB.

A choice source good ŝD,χ for each director D and variable χ in Φ.

Production: Director B has

Choice((2nΦ + 2)âA, (2nΦ + 1)âB)

Director A has Limit(d̂, 1) and

xd̂ = fd̂(x) = xaA .

For each variable χ, each director D has Limit(ŝD,χ, 2) and

xsD,χ = fsD,χ(x) = xaD .
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The director D whose good âD is chosen will produce exactly two units of ŝD,χ for each

variable χ. If A is chosen, he will also produce one unit of d̂. (Because of the limit gad-
gets, the directors have no other way to consume all the authorization goods, so, following
Proposition 40, we may assume that they do. This logic carries through the remainder of
the construction.)

Next, the chosen director picks x1. Both directors D have the following infrastructure
(note that we use generalized choice gadgets).

Goods: For each variable χ in x1, two choice authorization goods âD,χ and âD,χ̄, and two
assignment goods χ̂ andˆ̄χ.

For each variable χ in x2, a choice source good ŝD,χ and two assignment goods χ̂ andˆ̄χ.

Production: Each director D owns, for each variable χ ∈ x1:

GChoice(ŝD,χ, 3âD,χ, 3âD,χ̄)

and for each variable χ ∈ x2:

GChoice(ŝD,χ, χ̂, ˆ̄χ) .

Each χ agent has (for both directors): Limit(xχ̂, 1) and

xχ̂ = fχ̂(x) = xâD,χ

(the χ̄ agents have similar functions).

In essence, the director produces x2 himself; however, though he chooses x1, he must delegate
the production of the χ̂ goods for x1 to the χ and χ̄ agents. The extra authorization good
â will later be used to generate utility.

Next Φ is evaluated:

Goods: True and false goods Φ̂TRUE and Φ̂FALSE to represent the value of Φ.

Production: Director B has a

SATΦ({χ̂i}, { ˆ̄χi}, Φ̂TRUE, Φ̂FALSE)

gadget to evaluate Φ given the χ̂ and ˆ̄χ goods.

Note that a coalition of B and the χ agents may evaluate Φ without the help of any other
agents. Moreover, those same agents are required to compute Φ even if A is involved. This
will restrict the possible defecting coalitions.

Finally, agents receive their payoffs:

Goods: For each χ (resp. χ̄) agent and each director D, an intermediate utility good α̂D,χ
(resp. α̂D,χ̄).
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Production: Director A has Limit(γ̂A, 1) and

xD,γ̂A = fγA(x) = min((2n+ 2)xΦTRUE , xâA) .

Similarly, director B has Limit(γ̂A, 1) and

xγ̂A = fγA(x) = min((2n+ 2)xΦFALSE , xâB) .

Each χ agent has, for each director D: Limit(α̂D,χ, 1) and

xα̂D,χ = fD,αχ(x) = xâD,χ ,

(and χ̄ have similar functions).

Finally, each χ agent has

xγ̂χ = fA,γχ,χ(x) = min(xα̂A,χ , (2n+ 2)xΦTRUE)

xγ̂χ = fA,γχ,χ̄(x) = 2 min(xα̂A,χ̄ , (2n+ 2)xΦTRUE)

xγ̂χ = fB,γχ,χ(x) =
3

2
min(xα̂B,χ , (2n+ 2)xΦFALSE)

xγ̂χ = fB,γχ,χ̄(x) =
3

2
min(xα̂B,χ̄ , (2n+ 2)xΦFALSE)

(similar for the χ̄ agents).

Payoffs are summarized in the following table (D represents the chosen director):

Φ = 1, Φ = 0, Φ = 1, Φ = 0,
Agent D = A D = A D = B D = B
A 1 0 0 0
B 0 0 0 1

χ produces x1 1 0 0 3
2

χ does not
2 0 0 3

2produce x1

Agents A and B fight over whether Φ is true or false. In allocations where A makes Φ
true, the χ agents who don’t participate in producing x1 will get 2 units of utility and be
happy, but the agents who do produce x1 will only get 1 unit. Thus, if they can falsify Φ
with B, the coalition would rather defect and get 3

2
. Note that if they defect, the only setting

of x1 that they can produce is the one originally chosen by A (because any other setting
requires the production firms of the χ agents who got 2 and, therefore, would not want to
join the coalition).

Since nobody gets any utility if Φ is not evaluated, we may assume that it is evaluated in
any core allocation. Moreover, for the same reason, A must be the director if Φ is evaluated
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to true, and B must be the director if Φ is false. (A coalition of agents would clearly like to
defect from an allocation in which nobody receives any utility.)

For the moment, let us assume that the Σ2SAT instance is true, i.e. a “solution” x1

exists. In this case, a core allocation is the one in which A picks an x1 that solves the Σ2SAT
problem. In this case, the only agents who could reasonably defect are B and the χ agents
who produce x1. However, as noted, they are bound by A’s choice of x1, therefore they will
not be able to falsify Φ and would receive no utility if they defect. Thus, the allocation is in
the core. In contrast, if A picks the wrong x1 and still tries to satisfy Φ, that same coalition
will defect and falsify Φ on its own. Finally, any allocation in which A is not in charge is
precluded by the circle-of-death. The case that no solution x1 exists is merely a subset of
the cases mentioned above.

Thus, any core allocation must correspond to an x1 that “solves” the Σ2SAT instance.
It follows that core allocations are FΣP

2 -complete to compute.

Proof Sketch of Theorem 45: To show F∆P
2 -hardness, first, assume a single agent i to leaves

the economy. The defecting agent will maximize his utility using only his endowment ei and
his own production functions Fi. We will call his resulting utility his batna,5 bi. Note that
we can compute bi in F∆P

2 , and, given the bi’s, optimizing production subject to individual
rationality is also in F∆P

2 .

5.5 Computing Equilibria in a Sequential Model

Thus far, we have considered the most common models of rationality in markets — individual
defection and core rationality. However, since production often involves intermediate goods,
it seems natural to consider a model that makes this sequential property explicit.

For example, consider a production sequence in which â is transformed into b̂, b̂ is traded
and transformed into ĉ, and ĉ is again traded. Moreover, imagine that the agent who
transforms b̂ into ĉ would rather just keep the b̂ that he gets. It seems natural that this
agent should be able to wait to defect until she receives b̂, but core rationality ignores this
possibility.

Since we are not aware of a standard, general model of sequential production, we adopt
what we believe is a natural model. Specifically, we augment the production model to specify
time:

Definition 25 A sequential production plan is a specification ({xi}, {xk,t}) including the
vector of goods xi consumed by agent i and the vector of production inputs xk,t used by firm
k at time t. A feasible production plan is one in which all production inputs required at time

5The acronym BATNA, meaning “Best Alternative To a Negotiated Agreement,” is commonly used in
negotiation theory.
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t exist in the economy, i.e.

∑
k

xk,t ≤
t−1∑
τ=0

∑
k

(fk(xk,τ )− xk,t) +
∑
i

ei .

To ensure that all sequential production plans have polynomial size, we require that each
function fk may be used at most once and that some production function fk is used at each
timestep.

First, we assume that defectors are isolated for the remainder of the production plan,
i.e. an agent will participate until time td and then choose to deviate, after which he cannot
trade and can only use his own production technologies Fi. In this setting, we classify the
complexity and show that complexity equilibria exist under the natural generalization:

Theorem 46 In a model in which defecting individuals will face subsequent isolation, it is
F∆P

3 -complete to find the optimal sequential production plan in which no individual wishes
to defect.

Proof: Membership in F∆P
3 is the easy direction. As with core defections, given a plan

that represents a defection, it is easy (efficiently computable) to check. It follows that an
individually-rational production plan may be found in NP with an NP oracle (guess the plan
and use the oracle to verify its rationality). To find the optimal such plan, we maximize
social welfare. Thus, the problem lies in a generalization of OptP to the second level of the
polynomial hierarchy and, therefore, in F∆P

3 .
To prove that this problem is F∆P

3 -hard, we reduce from the F∆P
3 -complete problem

lexicographically maximum Σ2SAT [58], i.e. find the lexicographically maximum x1 such
that for all x2, Φ(x1, x2) = 1 (where Φ has nΦ variables). We define the following economy:

Agents: Two agents: agent A and B.

Goods: Two utility goods γ̂A and γ̂B.

An initial seed good ŝA.

Approval goods â and â′.

For each χ ∈ Φ, a source good ŝχ.

For each χ ∈ Φ, assignment goods χ̂ and ˆ̄χ.

True and false goods Φ̂TRUE and Φ̂FALSE.

For each agent and value of Φ, intermediate utility goods α̂, e.g. α̂A,TRUE.

For each χ ∈ x1, an “intermediate counting good” β̂χ.

Utilities: ui(x) = xγ̂i .

Endowments: For each χ ∈ x1, eA,ŝχ = 2.
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Production: For each χ ∈ x1, agent A has

GChoice(ŝχ, [2χ̂, â], [2 ˆ̄χ, â],
1

nΦ

γ̂A) .

Agent B has
xâ′ = fa′(x) = |x2| ·max(xâ − (|x1| − 1), 0)

and for each χ ∈ x2

xŝχ = fsχ(x) = 2 · xâ′

GChoice(ŝχ, χ̂, ˆ̄χ) .

Agent B also has SATΦ({χ̂i}, { ˆ̄χi}, Φ̂TRUE, Φ̂FALSE) to evaluate Φ.

For payoffs, agent A has

xα̂A,TRUE = fαA,T (x) = 4 · xΦ̂TRUE

Limit(α̂A,TRUE, 1)

xγ̂B = fγb(x) = 2 · xα̂A,TRUE
and agent B has

xα̂B,FALSE = fαB,F (x) = 4 · xΦ̂FALSE

Limit(α̂B,FALSE, 1)

xγ̂B = fγb(x) = 2 · xα̂B,FALSE .

Meanwhile, agent A has the following for each variable χ ∈ x1:

xβ̂χ = fβχ(x) = min(xχ̂, 2nΦ · ΦTRUE)

Limit(β̂χ, 1) .

and a binary counting gadget

BCG(γ̂A, β̂χ0 , β̂χ1 , . . . ) .

The economy functions in three stages. First, A picks x1. Once x1 is chosen, B picks x2 (the
structure of approval goods â ensures that no variable in x2 is chosen before all variables
in x1 have been fixed). Finally, payoffs are computed based on the results of evaluating Φ.
Agent B receives 2 units if it is false, and agent A receives 2 + σ units if Φ is true, where
σ is the value found by taking x1 as the binary representation of a number. Agent A also
has a default option to refuse to produce x1, thereby generating a small amount of utility
0 < uA < 1. (The complicated structure of intermediate goods merely ensures the correct
discretization and distribution of goods.)
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Production plans come in three flavors: satisfy Φ, falsify Φ, or neither. If Φ is satisfied,
then agent A will be happy. However, agent B would rather falsify Φ. Thus, if B can pick
x2 so that Φ is false, he will defect, since he does not need to interact with any other players
once he has the goods specifying x1. The only individually rational plan that satisfies Φ will
include an x1 such that Φ(x1, x2) is always true.

In plans that falsify Φ, agent A gets nothing and, therefore, will defect at the beginning
and choose the default option. Thus, no such plan may be individually rational.

Finally, in plans that do not compute Φ, agent B does not receive any utility, and A
receives at most 1 unit (from the default option). This is strictly dominated by any plan in
which Φ is made to true, so it can only be the optimal individually rational plan if for any
x1, there exists an x2 such that Φ(x1, x2) is false.

Thus, if there is an x1 such that Φ(x1, x2) is always true, the optimal individually rational
production plan is the one in which A picks the x1 that maximizes σ, i.e. the lexicographically
maximum x1. In other cases, the only individually rational option is for A to take the default
option, signaling that no such x1 exists. It follows that computing an optimal individually
rational sequential production plan is equivalent to lexicographically maximum Σ2SAT and,
therefore, is F∆P

3 -complete.

Second, we observe that isolation is not always a credible threat. We would like a
“subgame perfect” allocation; however, a subgame perfect equilibrium may require an ex-
ponentially large specification. Thus, we ask for a production plan that is consistent with
the realization of some subgame perfect equilibrium. We show that this problem is compu-
tationally harder:

Theorem 47 In a model in which defectors are not isolated, it is PSPACE-hard to find a
sequential production plan that is consistent with a subgame perfect equilibrium.

Proof: (Sketch.) We reduce from a TQBF instance:

∃x1∀x2 . . . xnTΦ(x1, x2, . . . xnT ) .

Consider a generalized choice gadget GChoice(ŝ, x1, . . . xc) in which the source good ŝ
may be produced in the economy (instead of given as an endowment), and the agent’s choice
is over bundles of goods xk instead of individual goods ĵk.

As before, agents will use choice gadgets to set the vectors xi, leveraging the generaliza-
tions to enforce order. In particular, instead of choosing only a good χ̂i, an agent chooses
a bundle of goods χ̂i and ŝi+1. This is the only source of ŝi+1, so obtaining the quantity of
ŝi+1 necessary to choose xi+1 necessarily requires choosing xi.

The choices are split among two agents A and B. Agent A picks all xi related to ∃
quantifiers (i.e. all x2i−1), and agent B picks xi related to ∀ quantifiers (i.e. all x2i). If Φ is
evaluated to true, agent A gets 2 units of utility and agent B gets 1 unit. If Φ is evaluated to
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false, B gets 2 units and A gets 1. Finally, if Φ is not evaluated at all, neither agent receives
any utility.

Under this payoff structure, the only credible threat an agent can make is to change his
assignment of some xi. (Refusal to assign some xi or compute Φ is not rational.) Thus, from
the perspective of subgame perfect equilibria, this economy is equivalent to a TQBF game
in which players alternate picking xi, and player A wins if Φ is true in the end. In this case,
a subgame perfect equilibrium is equivalent to a winning strategy, and the production plan
we seek is equivalent to the result of playing a winning strategy in this game. By definition,
A will have a winning strategy if and only if the TQBF instance is true. Thus, the value of
Φ in a production plan consistent with a subgame perfect equilibrium is equal to the value
of the TQBF instance.

It follows that finding such a plan is PSPACE-hard. (The details of the construction
follow naturally from the sequential choice mechanism of Theorem 46.)

5.6 Complexity Equilibria

Perhaps the most interesting complexity-theoretic phenomenon in non-convex economies is
the existence of allocations that are stable because profitable deviation is computationally
intractable. To formalize complexity equilibria, one must recognize that stable outcomes in
Economics are defined in terms of an appropriate concept of deviation.

Definition 26 A deviation scheme is a mapping D assigning each feasible allocation and
subset of agents a set of feasible allocations. Intuitively, if (x, y) is a feasible allocation and
S ⊆ [n], then D((x, y), S) is the set of all allocations to which the agents in S can drive the
economy in one step called a deviation by S. Deviation (x′, y′) ∈ D((x, y), S) is a profitable
deviation by S if each i ∈ S has at least as good utility in (x′, y′) than in (x, y), and at least
one agent i ∈ S has strictly better utility. A D-equilibrium is an allocation (x, y) such that
for all S D((x, y), S) contains no profitable deviations.

Suppose that, for all allocations (x, y) D((x, y), S) is the set of all feasible allocations
whenever S = [n], and is the empty set otherwise; then D-equilibria are precisely the Pareto
optimal allocations. To define the core, D((x, y), S) contains all feasible allocations that are
also feasible if the endowments, consumption, and production by agents not in S is set to
zero. And for the sequential production model, D((x, y), {i}) contains all allocations that
can be achieved by having agent i unilaterally change her production decisions; all other
values of D are empty.

We can now define complexity equilibria:

Definition 27 We say that a family of economies E has complexity equilibria with respect to
deviation scheme D if the following propblem is NP-complete: Given an allocation (x+, y+)E
in an economy E ∈ E , find a profitable D-deviation.
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Theorem 48 Economies with non-convex production possibilities have complexity equilibria
with respect to Pareto improvement, core rationality, and sequential rationality. Moreover,
the inefficiency of the complexity equilibrium is unbounded.

Proof: A nonconstructive existence proof follows from the economy of Theorem 41 and
the fact that it is NP-hard to satisfy k + 1 clauses of a CNF SAT formula given given an
assignment satisfying k clauses. To give a constructive example and demonstrate unbounded
inefficiency, we modify the economy to satisfy a standard CNF SAT instance.

Let Φ =
∧
φj be a CNF SAT instance with nΦ variables χi and mΦ clauses φj. We use

the economy of Theorem 41 with the following modified production functions:

Production: The functions for producing γ̂ are replaced by

xγ̂ = fγ,Φ(xφ̂1
, . . . xφ̂mΦ

) = min
j
xφ̂j

xγ̂ = fγ,ŝ(xŝ1 , . . . xŝnΦ
) =

1

4
min
i
xŝi

where ŝi is the source good from i’s choice gadget.

As in Theorem 41, the agents may pick an assignment φ and produce 1 unit of the
clause good for each satisfied clause. The welfare W will be the amount of γ̂ produced. The
production function fγ,Φ only produces γ̂ if all clause goods are present, so agents want to
satisfy Φ. When Φ is satisfied, the maximum amount of γ̂ is 1.

The function fγ,ŝ provides a back door to generate γ̂. However, since there are only 2
units of each ŝi good, at most 1

2
unit of γ̂ will be produced. Since fγ,ŝ is the only way to

produce γ̂ apart from fγ,Φ, no allocation can achieve welfare higher than W = 1
2

without
satisfying Φ.

Thus, an allocation in which the agents achieve a social welfare of 1
2

by using all their ŝi
in fγ,ŝ is a complexity equilibrium — it is certainly not Pareto efficient if Φ has a solution;
however, finding an allocation that is Pareto preferred requires achieving W > 1

2
and there-

fore satisfying Φ, which is NP-hard. Moreover, if we eliminate fγ,ŝ, the relative inefficiency
(relative social welfare of the complexity equilibrium compared to a true Pareto optimum)
is unbounded because the social welfare at the complexity equilibrium is 0 and the social
welfare at a Pareto optimum is 1.

Through standard complexity theory arguments involving so-called complexity cores, this
result implies that, unless P = NP, there are families of allocations on which any group of
polynomial-time agents would almost always be stuck. Specifically, a result of Orponen and
Schöning [77] implies the following corollary:

Corollary 49 Unless P = NP, there exists an infinite set of economies E with the following
properties:
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1. Any set of polynomial-time agents will be stuck at complexity equilibria in almost all
economies E ∈ E (in all but a finite number of economies).

2. The set E is not too small — if f(n) is the number of economies E ∈ E with size
|E| = n, then f(n) is superpolynomial in n.

Moreover, we show families of economies exist with complexity equilibria relative to
average-case NP-hardness. We refer the reader to Bogdanov and Trevisan’s survey [15] for
background on average-case complexity.

Theorem 50 There exists a distribution of economies (D, E) with complexity equilibria from
which Pareto improvement is average-case NP-hard.

Proof: (Rough sketch.) Consider modeling an economy as an undirected graph G = (V,E).
Each vertex v ∈ V corresponds to a location, and each edge corresponds to a route along
which goods may be transfered. This is repeated for each time t ∈ {1, . . . T}, and a vertex
(location) may choose to save goods or borrow against the future (like an edge from vt to
vt+1 in a product graph).

A feasible configuration of the economy is a specification of the net production at each
location v, the net transfer along each edge, and the net savings at v from time t to t+1. The
production choices at v will dictate how goods are exchanged, i.e. a production process will
inherently require that goods be saved or that they be exchanged with a particular neighbor
u. Using non-convexity as in the choice gadget, a location is forced to make a discrete choice
among possible sets of net-transfer vectors.

In the Arrow-Debreu framework, we model this economy by creating separate copies of
the goods and production functions for each time t and location and edge. (Note that Arrow
and Debreu [5] suggest modeling an economy over time and space by copying goods, so this
is not unprecedented.) Arbitrarily, we assume one agent per vertex v.

Hardness will follow because this economic model is a superset of an edge tiling problem
defined by Gurevich [34]. An edge tiling problem consists of a set of tiles T , an n×n square,
and some initial conditions. The goal is to place one tile at each location in the square such
that adjacent labels match and all initial constraints are satisfied.

Gurevich [34] shows that when the first row is randomly filled according to a certain
“uniform” distribution (the initial conditions) and all possible sets of tiles T occur with
positive probability, it is average-case NP-complete to decide if the n × n square may be
tiled.

The edge tiling problem corresponds to an economy where agents are organized on a line.
A production task (a tile) is chosen for each vertex at each time such that the net transfers to
neighbors (the left and right labels) and the net savings (the top and bottom labels) match
accordingly. Similar to the construction in Theorem 48, players only receive a payoff if the
square is completely tiled.

Reducing from Gurevich shows that when production at time t = 0 (i.e. filling the
first row) is done according to the proper distribution, improving from payoff 0 in such an
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economy is average-case NP-hard for any distribution over possible production tasks such
that every set of tiles occurs with positive probability.

The economy in this proof is somewhat reasonable. It is powerful because the precise
distribution does not matter, provided it satisfies the very general (though questionable)
condition that all sets of tiles are possible. The linear topology is an artifact of this particular
proof rather than a fundamental requirement.

The main drawback of this construction is that it requires randomization over discrete
production tasks. In contrast, a more natural reduction would fix the discrete choices and
randomize over continuous parameters of those choices. We do not know of a natural con-
struction that does this.

5.7 Discussion and Open Problems

We showed that economies with nonconvexities — in other words, real economies — can be
theaters of extreme complexity phenomena, including a novel kind of equilibrium in which
agents quiesce because of the intractability of the task of finding a better allocation. One
remark here is in order: economists often respond to complexity results such as the PPAD-
completeness of Nash equilibria by questioning the relevance, and plausibility in real life, of
the complex games with specialized structure that arise in those reductions. In the present
situation, however, the intractability is, intuitively, more “generic.” Nonconvex optimization
is a hard problem, and in hard optimization problems “gaps” between optima and defaults
are common. As a result, the present complexity results may be a little more compelling to
economists.

One could hope for a proof that, in a well-defined sense to be determined, nonconvex
economies are “often,” or even “almost always,” computationally hard. Our average-case
hard construction takes a step in this direction, and, we believe, gives hope that stronger
results are possible.
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Chapter 6

Market Communication in Production
Economies

In this chapter, we study the information content of equilibrium prices using the market
communication model of Deng, Papadimitriou, and Safra [23]. We show that, in the worst
case, communicating an exact equilibrium in a production economy requires a number of bits
that is a quadratic polynomial in the number of goods, the number of agents, the number of
firms, and the number of bits used to represent an endowment.

6.1 Introduction

In the European Union, prices are typically expressed in whole-Euro amounts (or as “nice”
decimals when they are small). In contrast, buyers and sellers in the United states cling
to every penny and advertise prices to the 1

100
-th of a dollar. Does such accuracy serve a

computational purpose? We study this question in the case of market equilibrium: how
many bits of information must prices express in order to ensure that the economy achieves
equilibrium?

The market communication model of Deng et al. [23] highlights the unusual properties
of communication in markets. In standard market models, communication often comes
from central authority, such as a market maker or Walras’s fictitious auctioneer [88]. This
omniscient authority must broadcast enough information (e.g. prices) for each agent to
decide his own behavior without further communication — because each agent has private
information (e.g. an endowment), it may be that agents are ignorant of others’ equilibrium
allocations. By comparison, in Yao’s basic two-party model [92], two players follow a protocol
(where both may send information) to communicate enough information that both players
know the answer to the problem. Here, we study the communication requirements of reaching
equilibrium in the market communication model.

Classical economic treatment of communication costs studies the dimensionality of the
message space required to communicate a Pareto-efficient outcome. In standard convex
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economies, the seminal work of Arrow and Debreu [5] may be interpreted as a proof that
(m − 1) real numbers — i.e. normalized prices — are sufficient. Subsequent work [48,
70] shows that normalized prices are optimal. A priori, the results for convex economies
are powerful because the amount of communication is independent of the number of agents
and firms. Many subsequent works have sharpened and extended these results [54, 18,
86]. Of particular relevance, Calsamiglia’s introduction of parametric communication [18]
precisely captures the notion that communication may leverage private information to reduce
communication.

Our work focuses on the bit-wise communication requirements for reaching equilibrium
— while (m−1) real numbers may be dimensionally optimal, they may hide many bits. Since
most real-world applications communicate a price with fixed precision, we follow Deng et al.
[23] in believing that bit-wise communication bounds are important. Related communication
complexity results [75, 76] consider the problem of communicating preferences or complete
allocations, while most research on market equilibria has focused on developing efficient
algorithms (e.g. [25, 56, 20]). To the best of our knowledge, Deng et al. give the only result
specifically applicable to this model.

Our main result gives a lower bound on the number of bits of information that must be
communicated in an Arrow-Debreu market with production. We show that the number of
bits depends polynomially on the number of agents, the number of firms, and the amount of
private information they hold.

Our bound is significantly stronger than the bound of Deng at al. [23]. First, Deng
et al. need Θ( n

m
)-bit numbers to show a poly(n) lower bound, i.e. they give each agent

polynomially many bits of private information. We achieve the same lower bound with a
logarithmic number of such bits. Second, Deng et al. must relax the standard non-satiation
requirement on utility functions;1 we do not. Thirdly, our bound is more general because it
considers a production economy.

The main shortcoming of our bound is that it critically exploits the fact that real numbers
rarely sum to the same value, even if they are very close. Thus, it is unlikely to extend to
approximate equilibria.

6.2 Markets and Market Communication

Market communication complexity aims to study the amount of information that prices must
encode to induce equilibrium in an Arrow-Debreu economy [5].

Arrow-Debreu Markets

An Arrow-Debreu market with production consists of n agents, m goods, and l production
firms (indexed by i, j, and k respectively). A bundle of goods is a vector x ∈ Rm where xj

1They call it “strict concavity.” Nonsatiation is required for Arrow and Debreu’s proof of the existence
of equilibrium [5].
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represents a quantity of good j.
Each agent has a utility function and an endowment. The utility function ui(xi) : RM →

R maps bundles of goods to utilities, and the endowment ei ∈ Rm is a bundle of goods. In
order to guarantee the existence of an equilibrium, it is sufficient to assume that ui is strictly
concave in x.

A production firm is specified by a set of net production possibilities Yk ⊂ RM . A vector
yk ∈ Yk represents the net quantities of goods produced: a positive value yj,k represents
an output of good j, and a negative value yj,k represents an input. Notice that at prices
π, the profit of firm k may be written as π · yk. Again, the sets Yk must satisfy convexity
requirements. In particular, it is sufficient to assume the following: Yk is closed, convex, and
contains the 0 vector, and if y ∈

⋃
k Yk, then −y ∈

⋃
k Yk if and only if y = 0.

To link production to consumption, a firm is owned by agents. Agent i may own a share
αi,k ∈ [0, 1] of the profits of firm k, i.e. at prices π, agent i’s budget will be the value of his
endowment plus the profit derived from firms he owns, i.e.

Mi = π · ei +
∑
k∈[l]

σi,kπ · yk . (6.1)

Since σi,k denotes a share of firm k, it must be that
∑

i∈[n] σi,k = 1. We omit the precise
restrictions on production sets and utility functions for brevity.

The following economic definitions are standard [65]:

Definition 28 An economic allocation is a tuple ({xi}, {yk}) specifying the bundle xi con-
sumed by each agent and the production vector yk chosen by each firm.

Definition 29 An economic allocation is feasible if xi ≥ 0, yk ∈ Yk, and the total demand
is less than or equal to the total supply, i.e.∑

i∈[n]

xi ≤
∑
i∈[n]

ei +
∑
j∈[m]

yk (6.2)

Definition 30 A competitive equilibrium (hereafter equilibrium) in an Arrow-Debreu mar-
ket is a set of prices π ∈ RM and a feasible allocation ({xi}, {yk}) such that agents maximize
their utilities and firms maximize their profits at current prices, i.e.

xi ∈ argmaxx∈{x|x·π≤ei·π} ui(x) (6.3)

yk ∈ argmaxy∈Yk π · y . (6.4)
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Market Communication

Deng et al. [23] define the market communication model as follows:

Definition 31 Market Communication: n agents [n] have private information xi ∈ Xi

(the sets Xi are common knowledge). Agent i wishes to compute the function fi(x1, . . . xn).
Another agent, agent 0 (the “invisible hand”), knows (x1, . . . xn).

A protocol is a set of functions (g0(·), g1(·), . . . gn(·)) where g0 : X1 × . . . Xn → X0,
gi∈[n] : X0 × Xi → R, and gi(g0(x1, . . . xn), xi) = fi(x1, . . . xn). The amount of market
communication is the number of bits in x0 = g0(x1, . . . xn).

In essence, the omniscient agent 0 computes x0 = g0(x1, . . . xn) and broadcasts x0 to
agents i ∈ [n]. Next, each agent privately uses xi to compute gi(x0, xi) = fi(x1, . . . xn).

The Power of Market Communication

The addition of an omniscient agent substantially increases the model’s power: it is as
powerful as standard nondeterministic communication.

Theorem 51 Assume communication costs are measured in bits. Then any problem f(x1, . . . xn)
in NPCC has an efficient market communication protocol.

Proof: By assumption, there is a communication sequence σ of poly-logarithmic length that
solves the problem. Let T = {(it, σt)} be a transcript of the communication, i.e. agent it
sent σt at time t.

Note that agent 0 may compute T because she is omniscient. Thus, in the market
communication protocol, agent 0 computes T and broadcasts it to the agents. Each agent
then simulates his behavior based on T to solve the problem. The size of it is log n, so
|T | = Θ(|σ| log n), thus giving an efficient market communication protocol.

Market Communication in Arrow-Debreu Markets

We wish to discuss the number of bits of private information an agent or firm receives;
however, such private information is often given in terms of real numbers or functions. To
generate a meaningful measure of each agent’s private information, we assume that endow-
ments, utility functions and production sets are drawn from finite sets.

Specifically, an agent’s utility function ui is drawn from a finite set Ui, and an agent’s
endowment is an m-dimensional vector in which each coordinate is represented in β bits.
Similarly, a firm’s production set Yk is drawn from a finite set Yk. Our bound will be
a function of β, the number of possible utility functions |Ui| and the number of possible
production sets |Yk|.

The goal of an agent or firm is to compute its consumption vector xi or production vector
yk. Thus, if E represents all private information in the economy, we have gi = xi(E) for the
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agents and gk = yk(E) for the firms. (While the definition of an equilibrium includes prices,
we take the position that prices are merely a communication tool and that, at the end of
the day, we only care if each agent chooses the correct allocation. Thus, we do not explicitly
require agents to compute prices as part of gi.)

For example, a trivial protocol might broadcast everyone’s endowments, utility functions,
and production sets; each agent individually computes the equilibrium. This näıve protocol
requires nmβ +

∑
i∈[n] |Ui| +

∑
k∈[l] lg |Yk| bits of communication. In the next section, we

will see that this is amount of communication is nearly necessary.

6.3 A Lower Bound for the Arrow-Debreu Model

Our main result shows that the number of bits required to communicate an equilibrium
in the worst case is polynomial in the number of goods, agents, firms, and bits of private
information. In particular, it requires communicating the total amount of each good available
in the economy as well as the utility functions of all agents and the production sets of all
firms.

Theorem 52 In the worst case, communicating a market equilibrium in the market com-
munication model requires at least

m

2
(β + lg(n− 1)) +

∑
i∈[n]\{1}

lg |Ui|+
∑

k∈[l]\{1}

lg |Yk| (6.5)

bits of communication to reach equilibrium.

The terms in this bound have natural interpretations. The m
2

(β + lg(n− 1)) term corre-
sponds to communicating the total global endowment of resources, since the total endowment
of each resource is, in general, a Θ(β + lg n)-bit number. The remaining terms correspond
to communicating everyone’s utility functions (

∑
lg |Ui|) and production sets (

∑
lg |Yk|).

Significantly, the main difference between this lower-bound and a naive protocol that
broadcasts everyone’s private information is that it only needs to communicate the total
amount of each good i available in the economy instead of the actual endowments of each
agent (nmβ bits).

This theorem has a couple of interesting special cases. In a setting where each agent/firm
has only two possible utility/production functions, the number of bits of communication
required is already linear in the number of agents n and firms l:

Corollary 53 Communicating a market equilibrium in the market communication model
where |Ui| = |Yk| = 2 requires at least

m

2
(β + lg(n− 1)) + n+ l −O(1) (6.6)

bits of communication.
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Moreover, we can substantially improve the lower bound of Deng et al. [23]. Deng et al.
achieve an Ω(n log(m+ n)) lower bound using an exponentially large set of utility functions
that require poly(m,n)-bit numbers, i.e. |Ui| = Ω

(
2p(m,n)

)
and β = q(m,n) for polynomials

p and q. By comparison, our construction achieves an equivalent lower bound with constant
β and |Ui| = poly(m,n). Theorem 52 gives a stronger bound for these parameters:

Corollary 54 Communicating a market equilibrium in the market communication model
where |Ui| = Ω

(
2p(m,n)

)
and β = q(m,n) requires at least

Ω (m (q(m,n) + lg(n− 1)) + n · p(m,n)) (6.7)

bits of communication.

We now prove the lower bound theorem.
Proof:(of Theorem 52) We construct an economy with m goods, n agents, and l firms.
The main trick is to make each combination of utility functions (or production functions)
correspond to a unique prime factorization. Thus, no two combinations of utility functions
(or production functions) will have the same optimal allocation.

The second trick is to leave one agent (and firm) without any private information, so the
number of communication sequences is trivially lower-bounded by the number of possible
equilibrium choices she may make.

The Economy. Assume m is divisible by 4, n ≥ 2, and l ≥ 2.
Partition the goods into four groups modulo 4, i.e.

Ma = {j|j ∈ [m] and j ≡ a mod 4} (6.8)

The sets will serve the following purposes:

• Goods in M0 are production inputs and goods in M1 are outputs. Nobody wants
goods in M0. Consequently, the entire supply of goods M0 is converted to goods in
M1. Goods in M1 are indistinguishable to the agents, so Pareto-optimality will imply
that producers maximize the total output of goods in M1.

• Goods in M2 and M3 are traded among agents. Goods are paired such that an agent
balances the quantity of a good m2 ∈M2 with some good m3 ∈M3 to match marginal
utilities.

Agents i > 1 have utility functions of the form

ui(xi) =
∑
j∈M3

(
2
√
xi,j lg ci,j + xi,j−1

)
+
∑
j∈M1

x1,j (6.9)
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where ci,j ∈ Ci,j, and the sets Ci,j will be determined later. Agents i > 1 are endowed with
goods from M0, M2 and M3 only, i.e.

ei,j =


ei,j, j ∈M0 ∪M3

ē, j ∈M2

0 otherwise.

(6.10)

For endowed goods, ei,j ∈ [2β] is a β-bit integer and ē = n · 2β is a large number (large
enough that, in equilibrium, an agent will always keep a positive quantity of each good in
M2).

Agent 1 has the utility function

u1(x1) =
∑
j∈M3

(
2
√
x1,j + x1,j−1

)
(6.11)

(the first term is equivalent to setting c1,j = 2). She is endowed with 1 unit each of goods in
M2, and M3, i.e.

e1,j =

{
1, j ∈M2 ∪M3

0 otherwise.
(6.12)

Note that agent 1 has no private information.
The firms have technology to convert goods in M0 to goods in M1. Like agents’ utilities,

the production functions are parameterized by coefficients cj,k ∈ Cj,k. We define the pro-
duction of firm k in terms of a production function, i.e. firm k may transform yj−1,k units
of good (j − 1) into yj,k units of good j according to the following function fj,k:

yj,k = fj,k(yj−1,k) = 2
√
yj−1,k · lg cj,k (6.13)

This function is translated to a set of vectors to match the model.2 In order to create a firm
with no private information, we require that cj,1 = 2. For simplicity, we also specify that all
firms are owned by agents i > 1.

Analysis. First, we show that agent 1 must be able to select(
(n− 1)2β

)m
4
∏
i∈[n]

|Ui| (6.14)

distinct consumption vectors. A similar proof gives a lower bound for the production side of
the economy.

2The only trick to converting fj,k to a set is to allow firm k to produce any amount of good j between
0 and fj,k. In equilibrium, production will always occur on the boundary defined by fj,k, so this change is
inconsequential.
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Consider a good j ∈M3. (Note that good (j− 1) is in M2.) Let pj =
πj
πj−1

be the relative

price of good j compared to good (j − 1). Note that each agent has a term of the form
2
√
xi,j lg ci,j + xi,j−1 in ui. In equilibrium, we know that agent i does not wish to sell good

j − 1 to get good j (or vice-versa). Thus, agent i must balance her marginal utilities from
the 2

√
xi,j lg ci,j and xi,j−1 terms. This gives the relation

∂
(
2
√
xi,j lg ci,j

)
∂xi,j

=
∂ (pjxi,j−1)

∂xi,j−1

(6.15)√
lg ci,j
xi,j

= pj (6.16)

xi,j =
lg ci,j
(pj)2

(6.17)

(Note that by construction, i.e. by choice of ē, this is always possible.) Since goods in M2

and M3 do not involve production, we know that∑
i∈[n]

xi,j =
∑
i∈[n]

ei,j . (6.18)

Let αj =
∑

i∈[n] ei,j. Using this constraint and the equations xi,j =
lg ci,j
(pj)2 , it follows that

p2
j =

1

αj

∑
i∈[n]

lg ci,j =
1

αj
lg

∏
i∈[n]

ci,j

 , (6.19)

and thus

xi,j =
αj lg ci,j

lg
(∏

i∈[n] ci,j

) . (6.20)

For agent 1, we get

x1,j =
1

lg

((∏
i∈[n]\{1} ci,j

) 1
αj

) . (6.21)

To show a lower bound, we want to show that we can choose the sets Ci,j such that the
number of possible values for x1,j is large. We take each set Ci,j to contain only prime
numbers. To count the number of possible values for x1,j, consider the value∏

i∈[n]\{1}

(ci,j)
1
αj =

∏
c∈∪iCi,j

(ci,j)
kc,j
αj (6.22)

where kc,j is the number of times that ci,j = c (over i). We want to count the number of
possible values for this product.
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Suppose the exponents
{
kc,j
αj

}
and

{
k′c,j
α′j

}
yield the same value, i.e.

∏
c∈∪iCi,j

(ci,j)
kc,j
αj =

∏
c∈∪iCi,j

(ci,j)

k′c,j
α′
j . (6.23)

Then we naturally get that ∏
c∈∪iCi,j

(ci,j)
kc,jα

′
j =

∏
c∈∪iCi,j

(ci,j)
kc,jαj . (6.24)

Since the terms kc,jα
′
j and k′c,jαj are all integers by construction, each side represents a

prime factorization of the same number. Since prime factorizations are unique, we get that
kc,jα

′
j = k′c,jαj for all c. Summing over all c and observing that

∑
i kc,j =

∑
i k
′
c,j = n− 1 we

see that αj = α′j and therefore kc,j = k′c,j.
Thus, every possible combination of kc,j and αj gives a different value for the product.

Taking the sets Ci,j to be disjoint (across i) and using the fact that there are (n − 1)2β

possible values for αj, we get

(n− 1)2β
∏

i∈[n]\{1}

|Ci,j| (6.25)

possible values for the product, and, therefore, the same number of possible values for x1,j.
Aggregating over all goods in M3, we see that the total number of possible vectors x1 is∏

j∈M3

(n− 1)2β
∏

i∈[n]\{1}

|Ci,j| =
(
(n− 1)2β

)m
4
∏
i∈[n]

|Ui| . (6.26)

The analysis for the firms is similar: we sketch the argument that firm 1 must be able to
select (

(n− 1)2β
)m

4
∏
k∈[l]

|Yk| (6.27)

distinct production vectors. First, we characterize optimal production. Consider a single
good j ∈M1 and observe that ∑

k∈[l]

yj−1,k =
∑
i∈[n]

ei,j−1 = αj . (6.28)

Let pj−1 =
πj−1

πj
be the equilibrium price of good (j − 1) relative to good j. Then we know

that firm k maximizes

yj,k − pj−1yj−1,k = 2
√
yj−1,k · lg cj,k − pj−1yj−1,k (6.29)

Taking the first derivative with respect to yj−1,k implies that yj,k =
lg cj,k

(pj−1)2 , so we repeat the

analysis used for agent 1.
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Because the choices of agent 1 and firm 1 are independent, all combinations of choices
are possible. Thus, the total number of communication sequences must be at least(

(n− 1)2β
)m

2
∏
i∈[n]

|Ui|
∏
k∈[l]

|Yk| (6.30)

and the total number of bits of communication is at least

m

2
(β + lg(n− 1)) +

∑
i∈[n]

lg |Ui|+
∑
k∈[l]

lg |Yk| . (6.31)

6.4 Conclusion

Our main theorem tarnishes the power of prices, with the caveat that we demand an exact
equilibrium. While (m−1) prices are sufficient, the amount of information they contain may
be highly dependent on the parameters of the market.

Most significantly, they must communicate much of agents’ private information, including
agents’ utility functions and firms’ production sets. Thus, the number of bits of information
they must communicate is linear in the number of agents and firms in the worst case. Con-
sequently, even though a price is supposed to be “universal,” prices must contain unique bits
of information for every agent in the economy. In the context of decimal prices, this roughly
translates to at least one digit for every four buyers of a good. When the number of goods
is small, this is quite impractical.

It remains an open problem to give tight bounds. For example, we currently do not have
any nontrivial upper bounds. Also, there are a few reasons why our lower bound may not
be tight. First, instead of a multiplicative factor of m

2
, one might expect a multiplicative

factor of (m−1) since that is the number of prices that must be communicated. Second, the
multiplicative log(m+ n) factor shown by Deng et al. [23] arises from an effect not present
in our construction.

A more significant open problem is to give lower bounds for communicating approximate
equilibria. Since our construction is highly dependent on the fact that two sets of irra-
tional numbers rarely sum to the same value, it is unlikely to survive when an approximate
equilibrium is sufficient. Furthermore, lower bounds for approximate equilibria would be
more realistic. Because market clearing is also measured to finite precision, a lower bound
approximate equilibria would give a stronger result on the amount of precision required in
prices.
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ternalities”. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’12. Kyoto, Japan: SIAM, 2012, pp. 869–886. url: http:
//dl.acm.org/citation.cfm?id=2095116.2095186.

[64] David Lucking-Reiley. “Vickrey Auctions in Practice: From Nineteenth-Century Phi-
lately to Twenty-First-Century E-Commerce”. In: Journal of Economic Perspectives
14.3 (2000), pp. 183–192. doi: 10.1257/jep.14.3.183. url: http://www.aeaweb.
org/articles.php?doi=10.1257/jep.14.3.183.

[65] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic Theory.
Oxford University Press, 1995. isbn: 0195073401. url: http://www.amazon.com/
exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0195073401.

[66] Eric Maskin and John Riley. “Asymmetric Auctions”. English. In: The Review of
Economic Studies 67.3 (2000), pp. 413–438. issn: 00346527. url: http://www.jstor.
org/stable/2566960.

[67] Paul Milgrom. Putting Auction Theory to Work. Churchill Lectures in Economics.
Cambridge University Press, 2004. isbn: 9780521536721. url: http://books.google.
com/books?id=AkeHTU7XW4kC.

[68] Paul Milgrom. “Putting Auction Theory to Work: The Simulteneous Ascending Auc-
tion”. English. In: Journal of Political Economy 108.2 (2000), pp. 245–272. issn:
00223808. url: http://www.jstor.org/stable/10.1086/262118.

http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(92)90073-O
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(92)90073-O
http://dx.doi.org/http://doi.acm.org/10.1145/12130.12138
http://dx.doi.org/http://doi.acm.org/10.1145/12130.12138
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691042640
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691042640
http://dl.acm.org/citation.cfm?id=1838206.1838437
http://dl.acm.org/citation.cfm?id=2095116.2095186
http://dl.acm.org/citation.cfm?id=2095116.2095186
http://dx.doi.org/10.1257/jep.14.3.183
http://www.aeaweb.org/articles.php?doi=10.1257/jep.14.3.183
http://www.aeaweb.org/articles.php?doi=10.1257/jep.14.3.183
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0195073401
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0195073401
http://www.jstor.org/stable/2566960
http://www.jstor.org/stable/2566960
http://books.google.com/books?id=AkeHTU7XW4kC
http://books.google.com/books?id=AkeHTU7XW4kC
http://www.jstor.org/stable/10.1086/262118


BIBLIOGRAPHY 124

[69] Paul Milgrom and John Roberts. “Adaptive and sophisticated learning in normal form
games”. In: Games and Economic Behavior 3.1 (1991), pp. 82 –100. issn: 0899-8256.
doi: 10.1016/0899-8256(91)90006-Z. url: http://www.sciencedirect.com/
science/article/pii/089982569190006Z.

[70] Kenneth Mount and Stanley Reiter. “The informational size of message spaces”. In:
Journal of Economic Theory 8.2 (1974), pp. 161–192.

[71] Roger B. Myerson. “Optimal Auction Design”. In: Mathematics of Operations Research
6.1 (1981), pp. 58–73.

[72] Matthew Nagler. “An exploratory analysis of the determinants of cooperative adver-
tising participation rates”. In: Marketing Letters 17.2 (2006), pp. 91–102. url: http:
//ideas.repec.org/a/kap/mktlet/v17y2006i2p91-102.html.

[73] Noam Nisan and Amir Ronen. “Algorithmic Mechanism Design”. In: Games and Eco-
nomic Behavior 35.1-2 (2001), pp. 166–196.

[74] Noam Nisan and Amir Ronen. “Computationally Feasible VCG Mechanisms”. In: J.
Artif. Intell. Res. (JAIR) 29 (2007), pp. 19–47.

[75] Noam Nisan and Ilya Segal. “The communication requirements of efficient allocations
and supporting prices”. In: Journal of Economic Theory 129.1 (2006), pp. 192–224.

[76] Noam Nisan et al. Algorithmic Game Theory. New York, NY, USA: Cambridge Uni-
versity Press, 2007. isbn: 0521872820.

[77] Pekka Orponen and Uwe Schoning. “The density and complexity of polynomial cores
for intractable sets”. In: Information and Control 70.1 (1986), pp. 54 –68. issn: 0019-
9958. doi: DOI:10.1016/S0019-9958(86)80024-9. url: http://www.sciencedirect.
com/science/article/B7MFM-4G3DGHT-2T/2/938db249da575aa0557c0c5ca2cd781c.

[78] Christos H. Papadimitriou. Computational complexity. Reading, Massachusetts: Addison-
Wesley, 1994. isbn: 0201530821.

[79] Christos H. Papadimitriou. “On the complexity of the parity argument and other
inefficient proofs of existence”. In: J. Comput. Syst. Sci. 48.3 (1994), pp. 498–532.
issn: 0022-0000. doi: http://dx.doi.org/10.1016/S0022-0000(05)80063-7.

[80] Christos H. Papadimitriou and Christopher A. Wilkens. “Economies with non-convex
production and complexity equilibria”. In: Proceedings of the 12th ACM conference
on Electronic commerce. EC ’11. San Jose, California, USA: ACM, 2011, pp. 137–146.
isbn: 978-1-4503-0261-6. doi: 10.1145/1993574.1993595. url: http://doi.acm.
org/10.1145/1993574.1993595.

http://dx.doi.org/10.1016/0899-8256(91)90006-Z
http://www.sciencedirect.com/science/article/pii/089982569190006Z
http://www.sciencedirect.com/science/article/pii/089982569190006Z
http://ideas.repec.org/a/kap/mktlet/v17y2006i2p91-102.html
http://ideas.repec.org/a/kap/mktlet/v17y2006i2p91-102.html
http://dx.doi.org/DOI: 10.1016/S0019-9958(86)80024-9
http://www.sciencedirect.com/science/article/B7MFM-4G3DGHT-2T/2/938db249da575aa0557c0c5ca2cd781c
http://www.sciencedirect.com/science/article/B7MFM-4G3DGHT-2T/2/938db249da575aa0557c0c5ca2cd781c
http://dx.doi.org/http://dx.doi.org/10.1016/S0022-0000(05)80063-7
http://dx.doi.org/10.1145/1993574.1993595
http://doi.acm.org/10.1145/1993574.1993595
http://doi.acm.org/10.1145/1993574.1993595


BIBLIOGRAPHY 125

[81] Ariel D. Procaccia and Jeffrey S. Rosenschein. “Junta distributions and the average-
case complexity of manipulating elections”. In: Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems. AAMAS ’06. Hako-
date, Japan: ACM, 2006, pp. 497–504. isbn: 1-59593-303-4. doi: http://doi.acm.
org/10.1145/1160633.1160726. url: http://doi.acm.org/10.1145/1160633.
1160726.

[82] Kevin Roberts. The characterization of implementable social choice rules. In Aggretaion
and Revelation of Preferences, J-J.Laffont (ed.), North Holland Publishing Company.
1979.
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Appendix A

Convergence in Utility-Target
Auctions

A.1 Convergence to the Egalitarian Equilibrium

Theorem 7 (Restatement). If losing bidders will raise their effective bids (A1), winning
bidders will try lowering their effective bids (A3), and the most impatient bidder is the losing
bidder bidding for the highest utility (A2, A4), then bids will converge to the Egalitarian
envy-free equilibrium.

Proof of Theorem 7. The proof will proceed as follows. We first categorize bidders into
levels based on their utility in the egalitarian outcome. We define upper and lower bounds
on utility-targets as multiples of ε, the amount by which players change their bids. Then, we
show that if for a given bidder j, the bid of every lower-utility bidder has converged to within
their bounds, the bid of j will also converge to within her bounds - first to at least her lower
bound (Lemma 55), and then to at most her upper bound (Lemma 56). Combining these
via induction gives our final result that the bids of all players converge near their egalitarian
outcome.

Let o∗ be the egalitarian outcome; let π∗i be the corresponding utility-target of bidder i.
Let Bb(o) =

∑
i∈[n] bi(o) be the total bid for a given outcome o. Let BX(o) =

∑
j∈LX bj(o),

and B∗X(o) be similarly defined.
First, consider all utility-targets in the egalitarian equlibrium; let zi be the ith smallest

(distinct) utility-target. Let Li be the set of all players with a utility-target of zi in the
egalitarian equilibrium. We will use L(j) to denote the level of a bidder j.

We will show convergence by showing that there exist functions b−(i) and b+(i) s.t. for
any j ∈ Li, utility-targets converge into and remain in the interval [π∗j − εb−(i), π∗j + εb+(i)].

Bidding Bounds. We now precisely define the bounding functions b−(·) and b+(·).
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Definition 32

b−(i) = 22|L<i| (A.1)

b+(i) = 22|L<i|+|Li| (A.2)

These bounds are given specifically so that for any level k, the sum over upper bounds
in lower levels is at most the lower bound in level k, and the sum over all lower bounds for
lower (or equal) levels is at most the upper bound for level k. Intuitively, we are saying that
lower-level bidders cannot over or under bid enough to make up for bidders in level k.

Claim 7

b−(k) >
k−1∑
i=0

|Li|b+(i) (A.3)

b+(k) >
k∑
i=0

|Li|b−(i) (A.4)

We omit the proof; it follows from manipulation of exponential sums.
Witness outcomes. Recall from Algorithm 2 that utility-targets for any given player

are raised until the CEF constraint for some outcome o is violated. These outcomes have
an important role to play in the egalitarian equilibrium — they are the reason that a bidder
cannot achieve any more utility. We will call them witness outcomes.

Three properties of these witness outcomes are important for us. First, bidder i values
the witness at less than her egalitarian bid, hence she would be ‘losing’ if it was chosen
above the egalitarian winning ad; that all bidders with higher utility value it at at least their
utility-target; and that with the final winning bids, the total bid of each is tied. We define
witness outcomes precisely as follows:

Definition 33 Outcome ow is a witness outcome for bidder j at the egalitarian utility-
targets π∗ if its total bid is tied with the egalitarian outcome, j asking for more utility at the
egalitarian equilibrium results in a higher total bid for ow than for the optimal egalitarian ad
and j is the highest-utility bidder to lose if ow wins over o∗.

Recall the intuition behind these outcomes: they are the reason that a bidder cannot
achieve more utility at the egalitarian equilibrium. If there is no witness for a bidder who
must pay something, then the bidder could ask for more utility, and higher utility bidders
could effectively ‘pick up the slack’, resulting in a more egalitarian outcome.

Claim 8 At the egalitarian equilibrium, every bidder j s.t. π∗i < vi(o∗) has at least one
witness.
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Proof: We will prove via contradiction. Assume at the CEF egalitarian outcome o∗ bidder j
has no witness. Now, let bidder j increase her utility-target by a small enough ε > 0, that
only outcomes that were previously tied with o∗ win over o∗. For each of these outcomes,
there must be a higher utility bidder than j who does not win with the outcome; otherwise
it would be a witness for j. Decrease the utility-targets of the highest utility bidder not in
each of these outcomes by ε. At this point, all outcomes will be tied again — and we can
have the optimal outcome win the tiebreaker via having a higher utility, or assume that one
player will decrease, then raise their utility-target to ensure that it was the previous outcome
to win. These bids will be CEF, and will be more egalitarian than o∗, as bidder j achieved
more utility, and only higher utility bidders achieved less utility.

Another important property will be that each outcome is only a witness for bidders of a
single level:

Claim 9 An outcome is only a witness outcome for bidders of a single level.

This really follows from the definition — bidders in different levels cannot both be the
highest utility bidder to not win with an outcome. More intuitively though, if players of
different levels were both not in an outcome, and the lower utility bidder had no other witness
outcome, then a more egalitarian outcome would involve increasing his utility-target, and
decreasing the utility-target of the higher utility bidder.

Bidding convergence. We now present the core of our convergence result. This con-
vergence is a two step process for bidders in a given level; after the utility bids of all lower
level bidders have converged within their bounds, convergence in the given level to at least
the lower bound takes place first, and then bids in the given level will converge to below
their upper bound.

Lemma 55 Under assumptions A1, A2, A3 and A4, the utility-target of each bidder j in
level Li will converge to at least their lower bounds, π∗j − ε · b−(i) if for every bidder j′ in
level Li− s.t. i− < i, πj′ ≤ π∗j′ + ε · b+(i−).

Proof: Our argument consists of two parts: first, that if a bidder is bidding for utility at
or below her lower bound then she will never reduce her utility-target further. Second, she
will eventually try raising her bid (by A3). These two combined will lead to her eventually
raising her bid to at least the lower bound.

Claim 10 Under the assumptions of Lemma 55, no bidder j in level Li with a utility-target
of πj ≤ π∗j − ε · b−(i) will lower her utility-target.

We will prove via contradiction. Assume for bidder j that with a utility-target of πj ≤
π∗j − ε · b−(i), she wishes to lower her utility-target further. Let o be the winning outcome
with bids π. As i will only lower her bid if she is losing (A1), πj > vj(o). We will now try
to derive the contradiction that the total bid for the optimal outcome is at least the total
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effective bid for o (B(o∗) > B(o)), hence she must win and would not care to lower her
utility-target.

For j to decrease her utility-target, by A4 she must be the highest utility bidder who is
losing such that πj > vj(o). By our bound, we know that for every lower utility bidder j′ in
level Li− , πj′ ≤ π∗j′ + εb+(i−). Since o∗ is the optimal winning outcome and o the currently
winning outcome, B∗(o∗) ≥ B∗(o) and B(o∗) ≤ B(o).

In the egalitarian outcome, every bidder j receives the utility she bids for; hence b∗j(o
∗) =

vj(o∗) − π∗j . By our assumption on the utility-target bounds, for all bidders j′ ∈ L<i+1,
b∗j′(o

∗)− bj′(o∗) ≤ εb+(L(j′)).
Consider a bidder j′ in a lower level than j and first, is requesting more utility relative to

the egalitarian outcome, specifically that πj′ > π∗j′ . Hence, we will have 0 ≥ bj′(o
∗)−b∗j′(o∗) ≥

−(πj′ − π∗j′) and 0 ≥ bj′(o)− b∗j′(o) ≥ −(πj′ − π∗j′). Hence,

(bj′(o
∗)− b∗j′(o∗))− (bj′(o)− b∗j′(o)) ≥ −(πj′ − π∗j′) (A.5)

≥ −b+(L(j′)). (A.6)

Consider the case that πj′ ≤ π∗j′ , that j′ is requesting less utility than in the egalitarian
outcome. Then bj′(o

∗)− b∗j′(o∗) = −(πj′ −π∗j′) ≥ 0, and bj′(o)− b∗j′(o) ≤ −(πj′ −π∗j′). Hence,

(bj′(o
∗)− b∗j′(o∗))− (bj′(o)− b∗j′(o)) ≥ 0. (A.7)

Summing over all lower-level bidders via Equations (A.6) and (A.7) gives (B<i(o
∗) −

B∗<i(o
∗))− (B<i(o)−B∗<i(o)) ≥ −

∑
i′<L(j) b

+(i′) and hence by Claim 7,

(B<i(o
∗)−B∗<i(o

∗))− (B<i(o)−B∗<i(o)) > −b−(i). (A.8)

Now, consider a bidder j′ in the same or a higher level than j. If j′ is overbidding and
not winning in outcome o with bids b, then she would have decreased her utility-target faster
than j. She could however be overbidding and winning in o; in which case the decrease in bids
for o∗ must be bounded by the decrease for o, hence: (bj′(o

∗)− b∗j′(o∗))− (bj′(o)− b∗j′(o)) ≥ 0.
If she is requesting less utility, o∗ will see the full increase in bid while o may not. Denote
the total bid of all bidders aside from j in the same or higher level as j as B≥i\j(o). Then,
summing over all such bidders gives

B≥i\j(o
∗)−B∗≥i\j(o

∗))− (B≥i\j(o)−B∗≥i\j(o)) ≥ 0. (A.9)

Our original assumption on j gives (bj(o
∗)−b∗j(o∗))−(bj(o)−b∗j(o)) ≤ b−(i). Now, taking

the sum over this and equations (A.8) and (A.9) gives (B(o∗)−B∗(o∗))− (B(o)−B∗(o)) >
−b+(L(j)) + b+(L(j)) = 0. By our assumption that o∗ is the egalitarian winning outcome,
we have B∗(o∗)−B∗(o) ≥ 0. Adding these yields

B(o∗)−B(o) > 0. (A.10)
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This is in violation of our assumption that o wins with bids b. Hence, no such bidder j can
ever wish to lower her utility-target past the lower bound when all lower-level agents have
bids within their upper bounds. By Assumption A3, she will eventually try and lower her
bid when winning, hence her bid will converge above her lower bound.

Lemma 56 Under assumptions A1, A2, A3 and A4, the utility-target πj of each bidder j
in level Li will converge to at most the upper bound, π∗j + ε · b+(i) if for every bidder j′ in
level Li− s.t. i− ≤ i, πj′ ≥ s∗j′ − ε · b−(i−).

Proof:
By Assumptions A1, A2 and Observation 3, a bidder will only request more utility from

a set of bids b with winning outcome o if all other bidders are winning with bids b, and by
Lemma 8, b must be CEF.

Our proof will proceed by showing that in any such o, πj < π∗j + ε · b+(i), and hence her
utility-target must stay below π∗j + ε · b+(i) in winning outcomes. Furthermore, by Theorem
4 bids will become CEF; hence i will be forced to decrease her utility-target.

By Claim 8, there is a witness outcome ow which includes every bidder j′ in a strictly
higher level i+ than j. We will now show that if all other players are winning with the egal-
itarian winning outcome, then j’s utility-target must be below her upper bound, otherwise
the witness outcome ow would win over o∗.

By Definition 33, B∗(ow) = B∗(o∗). Consider the quantity B(o∗)−B∗(o∗), and break it
into sums over bidders in levels at or below bidder j, j and bidders in levels above j:

(B(o∗)−B∗(o∗)) =(B≤i\j(o
∗)−B∗≤i\j(o

∗))

+ (bj(o
∗)− b∗j(o∗))

+ (B>i(o
∗)−B∗>i(o

∗))

We will now proceed by separately considering bidders in higher and lower levels than
bidder j. We will bound the change in bids from each, and see that there is no way for
bidder j to ask for utility above her upper bound and still be in the winning outcome.

Higher-level bidders. By properties of witness sets, any such bidder j′ must be winning
in the witness outcome at both the egalitarian bids and the current bids, hence bj′(o

w) −
b∗j′(o

w) = −(πj′ − π∗j′). Since we know that at the egalitarian bids, such a bidder must
be winning in the egalitarian outcome, bj′(o

∗) − b∗j′(o∗) = −(πj′ − π∗j′) ≤ bj′(o
w) − b∗j′(ow).

Summing over all such bidders yields

(B>i(o
∗)−B∗>i(o

∗))− (B>i(o
w)−B∗>i(o

w)) ≤ 0 (A.11)

Lower-level bidders. By our initial assumption that bidding has converged above
lower bounds for these bidders, for any bidder j′ in L≤i, πj′ ≥ π∗j′ − εb−(L(j′)), and hence
bj′(o

∗) ≤ b∗j′(o
∗) + εb−(L(j′)) and bj′(o

w) ≤ b∗j′(o
w) + εb−(L(j′)).
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Recall that all bids b∗j′(o
∗) and bj′(o

∗) are winning by assumption — since o∗ is the
egalitarian outcome, and no player wishes to decrease their utility-target in the current
bids. If for some bidder j′, vj′(o

w) ≥ vj′(o
∗), then (bj′(o

w) − b∗j′(ow)) = (bj′(o
∗) − b∗j′(o∗)) =

−(πj′ − π∗j′).
Consider then the case that vj′(ow) < vj′(o∗); that is, that j′ values the witness o less

than the egalitarian outcome. We will consider two cases: that her utility-target is lower or
higher than her egalitarian utility-target respectively.

(πj′ < π∗j′) If the bidder j′ bids for less utility than in the egalitarian outcome, then that increase
in effective bid will be bounded by the increase in the bid for the egalitarian outcome.
That is, we have bj′(o

w) − b∗j′(ow) = max(vj′(o
w), πj′) − πj′ − max(vj′(o

w), π∗j′) + π∗j′ ,
and hence bj′(o

w)− b∗j′(ow) = −(πj′ − π∗j′) + (max(vj′(o
w), πj′)−max(vj′(o

w), π∗j′)). As
bj′(o

∗)− b∗j′(o∗) = −(πj′ − π∗j′), we then have:

0 ≤ bj′(o
w)− b∗j′(ow) ≤ bj′(o

∗)− b∗j′(o∗) = −(πj′ − π∗j′). (A.12)

Furthermore, since πj′ ≥ π∗j′ − εb−(L(j′)) by assumption, we have:

0 ≤ bj′(o
w)− b∗j′(ow) ≤ bj′(o

∗)− b∗j′(o∗) ≤ εb−(L(j′)) (A.13)

and
0 ≤ (bj′(o

∗)− b∗j′(o∗))− (bj′(o
w)− b∗j′(ow)) ≤ εb−(L(j′)). (A.14)

(πj′ ≥ π∗j′) If bidder j′ instead is bidding for at least as much utility as in the egalitarian outcome,
the decrease in total bid is bounded by the change in bids for the egalitarian outcome,
hence the change in utility-targets will be between bj′(o

∗) − b∗j′(o∗) = π∗j′ − πj′ and 0.
Hence,

bj′(o
∗)− b∗j′(o∗) ≤ bj′(o

w)− b∗j′(ow) ≤ 0 (A.15)

and
−(πj′ − π∗j′) ≤ (bj′(o

∗)− b∗j′(o∗))− (bj′(o
w)− b∗j(ow)) ≤ 0. (A.16)

We now have upper bounds on −(πj′ − π∗j′) ≤ (bj′(o
∗) − b∗j′(o∗)) − (bj′(o

w) − b∗j(ow)) for
all lower-level bidders. Taking the sum across all members of L≤i via Equations (A.14) and
(A.16) gives: ∑

j′∈L≤i

(bj′(o
∗)− b∗j′(o∗))− (bj′(o

w)− b∗j′(ow)) ≤
∑
j′∈L≤i

εb−(L(j′)) (A.17)

Rearranging and noting that
∑

j′∈L≤i εb
−(L(j′)) < b+(i) by Claim 7 gives

(B≤i\j(o
∗)−B∗≤i\j(o

∗))− (B≤i\j(o
w)−B∗≤i\j(o

w)) < εb+(i). (A.18)

Summing over equations (A.18) and (A.11) gives us:
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(B≤i\j(o
∗)−B∗≤i\j(o

∗))− (B≤i\j(o
w)−B∗≤i\j(o

w))

+ (B>i(o
∗)−B∗>i(o

∗))− (B>i(o
w)−B∗>i(o

w)) < εb+(i). (A.19)

By assumption, (bj(o
∗)−b∗j(o∗)) = −(πj−π∗j ) ≤ −εb+(i) and bj(o

w) = b∗j(o
w)) = 0. Thus,

(bj(o
∗)− b∗j(o∗))− (bj(o

w)− bji∗(ow)) ≤ −εb+(i). Adding this to (A.19) gives:

(B(o∗)−B∗(o∗))− (B(ow)−B∗(ow)) < εb+(i)− εb+(i) = 0 (A.20)

By our initial assumption that ow is a witness outcome, B∗(o∗) −B∗(ow) = 0. Adding this
to the above equation yields

B(o∗) < B(ow) (A.21)

This contradicts our assumption that o∗ is a winning set with bids b(·). Hence, j will be
forced to decrease her utility-target to at most π∗j + εb+(i) before the egalitarian winning set
o∗ is winning again.

Combining Lemma 55 and Lemma 56 gives us convergence of each bidder in each level
i to within their bounds as soon as lower level bidders have all converged. It follows then
from straightforward induction on levels that all bids converge to within their bounds.
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Appendix B

Optimality in Single-Call Mechanisms

B.1 Optimality Proofs for Generalized BKS

In this section, we generalize our optimality result of Section 4 to arbitrary probability
measures and give a complete proof. Theorem 37 shows that truthful payments take the
form

λi(A(b̂), b̂, b) = ρµb (b̂)Ai(b̂) + λ0
i (b̂, b) a.s.

and thus optimizing the bid-normalized payments means optimizing the following quantity:∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))
=
ρµb (b̂)Ai(b̂)

biAi(b̂)
=
ρµb (b̂)

bi
.

This means that for worst-case payments we will optimize supi,b̂

∣∣∣ρµb (b̂)

bi

∣∣∣, and for payment

variance we will optimize maxi Varb̂∼µb

(
ρµb (b̂)

bi

)
. We show that the BKS transformation is

optimal for both, subject to an almost everywhere caveat:

Theorem 57 (Optimality of the BKS Transformation) (Generalization of Theorem 33)
The BKS reduction SPtoMechBKS(A, γ) optimizes the payment variance and worst-case
normalized payment subject to a lower bound of α = (1 − γ)n ∈ (1

e
, 1) on the precision, the

welfare approximation (n ≥ 2), or the revenue approximation (n ≥ 2). That is, for any
other truthful reduction (µ, {λi}) that achieves a precision, welfare approximation, or rev-
enue approximation of α, the worst-case normalized payments are at least as large almost
everywhere over b:

sup
A,i

Varb̂∼µb

(∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))

)
= max

i
Varb̂∼µb

(
ρµb (b̂)

bi

)
≥ max

i
Varb̂∼µb

(
ρBKSb (b̂)

bi

)
a.e.

and

sup
A,i,b̂

∣∣∣∣∣∑
j

λij(bj(A(b̂)), b̂, b)

bj(A(b̂))

∣∣∣∣∣ = sup
i,b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ sup
i,b̂

∣∣∣∣∣ρBKSb (b̂)

bi

∣∣∣∣∣ a.e.
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Under the nice distribution assumption, this holds for every b.

The theorem is proven in two steps. First, we show in Lemma 58 that a distribution
which optimizes precision also optimizes the welfare and revenue approximations. Second,
we prove in Theorem 59 that the BKS transform optimizes precision.

Lemma 58 (Generalization of Lemma 34) For α > 1
e

and n ≥ 2, a probability measure that
optimizes the variance of normalized payments or the maximum normalized payment subject
to a precision constraint of Pr(b̂ = b|b) ≥ α also optimizes the maximum normalized payment
almost everywhere subject to a welfare or revenue approximation of α.

Lemma 58 is proven in Section B.1, building on technical lemmas form Section B.1.

Theorem 59 (Precision Optimality of the BKS Transformation) (Generalization of
Theorem 35) The BKS reduction SPtoMechBKS(A, γ) optimizes the variance of normal-
ized payments and the worst-case normalized payment subject to a lower bound of αP =
(1 − γ)n ∈ (1

e
, 1) on the precision almost everywhere over b. Under the nice distribution

assumption, it is optimal for every b.

Definitions

To prove Theorem 59, we give names to certain probabilities. As in the MIDR setting, we
use a set M ⊆ [n] to denote the set of bidders with b̂i = bi. Bidders i 6∈ M have their bids
lowered, that is b̂i < bi. We define the probability πµ(M, b) to be the probability that such
an event occurs, that is, πµ(M, b) is the probability when b is bid that b̂i = bi if i ∈M , and
b̂i < bi if i 6∈M :

πµ(M, b) ≡ Pr
(

(b̂i = bi for i ∈M) and (b̂i < bi for i 6∈M)
∣∣∣ b) .

Note that for the BKS transformation, πµ(M, b) = (1− γ)|M |γn−|M | so πµ(M∪{i},b)
πµ(M,b)

= 1−γ
γ

.
The second probability quantifies the behavior of µb near b as follows. Fix a bid b and

assume player i actually bids bi − δ. Does the distribution µbi−δ,b−i cause the reduction to

select b̂ = b with positive probability in spite of the fact that i said bi− δ? In particular, we
care about the average behavior for δ ∈ [0, bi], which we represent by zµ(M, i, b̄). Formally,
we define

ζµ(M, i, b, z) ≡ Pr
(
b̂i = z and (b̂j = bj for j ∈M \ {i}) and (b̂j < bj for j 6∈M ∪ {i})

∣∣∣ b)
and

zµ(M, i, b) ≡ 1

bi

∫ bi

0

ζµ(M, i, (u, b−i), bi) .

Of particular importance, we will show zµ(M, i, b) = 0 almost everywhere in general and
everywhere under the nice distribution assumption.



APPENDIX B. OPTIMALITY IN SINGLE-CALL MECHANISMS 136

Precision Optimality of the BKS Transformation

The optimality proof for the BKS transformation
The first result follows as a corollary of Lemma 64:

Corollary 60 (of Lemma 64) If a resampling distribution µ satisfies the monotonicity con-
dition, then for all M , i 6∈M :

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ πµ(M ∪ {i}, b)− zµ(M, i, b)

πµ(M, b)

and ∫
b̂i≤bi∧(j∈M⇒b̂j=bj)∧(j 6∈M∪{i}⇒b̂j<bj)

(
ρµb (b̂)

bi

)2

dµb

≥ (πµ(M, b) + πµ(M ∪ {i}, b)) π
µ(M ∪ {i}, b)
πµ(M, b)

(
1− zµ(M, i, b)

πµ(M ∪ {i}, b)

)2

.

Proof: Apply Lemma 64 where B−i is the set of b̂−i where b̂j = bj if j ∈ M and b̂j < bj for
j 6∈M .

If we ignore the zµ(M, i, b) terms, this looks precisely like the normalized payments from
the MIDR setting. Fortunately, zµ(M, i, b) is almost always zero:

Corollary 61 (of Lemma 67) For any resampling distribution µ and a fixed M and i,

zµ(M, i, b) = 0 a.e.

(i.e. for all but a set of b with zero measure).
Under the nice distribution assumption, zµ(M, i, b) = 0 for all b.

Proof: Note that ζµ(M, i, (u, b−i), bi) ≤ Prµ(b̂i = bi|u, b−i), so by Lemma 67

zµ(M, i, b) =
1

bi

∫ bi

0

ζµ(M, i, (u, b−i), bi) ≤
∫ bi

0

Pr
µ

(b̂i = bi|u, b−i) = 0 a.e.

Thus, Corollaries 60 and 61 together imply the following bound:

Lemma 62 If a resampling disrtibution µ with precision α ≥ (1 − γ)n satisfies the mono-
tonicity condition, then

sup
i,b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ
γ

a.e.

that is, for all b but a set with measure zero. This holds everywhere if zµ(M, i, b) = 0
everywhere.
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Proof: We first prove the bound on the worst-case normalized payment. By assumption on
the precision of µ, we have πµ([n], b) ≥ (1 − γ)n for some γ and all b. By Corollary 60, we
know that

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ πµ(M ∪ {i}, b)− zµ(M, i, b)

πµ(M, b)
.

Applying Lemma 65 with η(S) = πµ(S, b), α = (1− γ)n, and β = 1 we get that

max
M,i 6∈M

πµ(M ∪ {i}, b)
πµ(M, b)

≥ 1− φ
φ

where

φ = 1−
(

(1− γ)n

1

) 1
n

= γ .

Thus,

max
M,i6∈M

πµ(M ∪ {i}, b)
πµ(M, b)

≥ 1− γ
γ

.

Aggregating Corollary 60 over all M and i 6∈M , we have

sup
i,b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ max
M,i6∈M

πµ(M ∪ {i}, b)
πµ(M, b)

− max
M,i6∈M

zµ(M, i, b)

πµ(M, b)

≥ 1− γ
γ
− max

M,i6∈M

zµ(M, i, b)

πµ(M, b)
.

If we assume zµ(M, i, b) = 0 everywhere (e.g. by the nice distribution assumption), then we
get

sup
i,b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ
γ

.

Otherwise, Corollary 61 says that zµ(M, i, b) = 0 almost everywhere, giving the more general
bound.

Lemma 63 If a resampling distribution µ with precision α ≥ (1 − γ)n ≥ 1
e

satisfies the
monotonicity condition, then

max
i

Varb̂

(
ρµb (b̂)

bi

)
≥ 1− γ

γ
a.e.

that is, for all b but a set with measure zero. This holds everywhere if zµ(M, i, b) = 0
everywhere.
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Proof: The proof for variance is similar to Lemma 62, but we apply Lemma 66 instead of
Lemma 65. First, note that since µb is a probability measure, µb(Rn) = 1 and thus∫

b̂∈Rn

ρµb (b̂)

bi
dµb =

1

bi
νb,i(Rn) = µb(Rn)− 1

bi

∫ bi

0

µu,b−i(Rn)du = 1− 1

bi

∫ bi

0

1du = 0 .

We begin with the variance for player i, applying Corollaries 60 and 61:

Varb̂

(
ρµb (b̂)

bi

)
=

∫
b̂∈Rn

(
ρµb (b̂)

bi

)2

dµb −

(∫
b̂∈Rn

ρµb (b̂)

bi
dµb

)2

=

∫
b̂∈Rn

(
ρµb (b̂)

bi

)2

dµb

≥
∑

M |i 6∈M

∫
b̂i≤bi∧(j∈M⇒b̂j=bj)∧(j 6∈M∪{i}⇒b̂j<bj)

(
ρµb (b̂)

bi

)2

dµb

≥
∑

M |i 6∈M

(πµ(M, b) + πµ(M ∪ {i}, b)) π
µ(M ∪ {i}, b)
πµ(M, b)

a.e.

Applying Lemma 66 with η(S) = πµ(S, b), α = (1− γ)n and β = Pr
(
b̂ ≤ b

∣∣∣ b) immediately

implies

max
i

Varb̂

(
ρµb (b̂)

bi

)
≥ Pr

(
b̂ ≤ b

∣∣∣ b) 1− φ
φ

a.e.

where

φ = 1−

 (1− γ)n

Pr
(
b̂ ≤ b

∣∣∣ b)
 1

n

.

One can check that when (1−γ)n

Pr( b̂≤b|b) ≥
1
e
, the quantity Pr

(
b̂ ≤ b

∣∣∣ b) 1−φ
φ

is decreasing in

Pr
(
b̂ ≤ b

∣∣∣ b). Taking the worst case Pr
(
b̂ ≤ b

∣∣∣ b) = 1 implies the desired result:

max
i

Varb̂

(
ρµb (b̂)

bi

)
≥ max

i
≥ 1− γ

γ
a.e.

Theorem 59 – optimality of the BKS transformation with respect to a precision bound –
follows from the two previous lemmas:
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Proof:[ of Theorem 59] For worst-case payments, we show that for any measure µ, with
precision at least 2−n,

sup
i,b̂

∣∣∣∣∣ρBKSb (b̂)

bi

∣∣∣∣∣ ≤ sup
i,b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ a.e.
For Pr(b̂ = b|b) = (1 − γ)n, the BKS transform achieves supi,b̂

∣∣∣ρBKSb (b̂)

bi

∣∣∣ = max
(

1, 1−γ
γ

)
for

all b. Provided γ > 1
2
, the dominant term is 1−γ

γ
and Lemma 62 shows that this is a lower

bound for any such µ almost everywhere. When α > 2−n we get γ > 1
2
, and thus BKS is

optimal.
Moreover, under the nice distribution assumption (implying zµ(M, i, b) = 0), Lemma 62

says that this holds everywhere.
For the variance of normalized payments, we need to show that for any measure µ with

precision at least 1
e
:

Varb̂∼µb

(
ρBKSb (b̂)

bi

)
≤ Varb̂∼µb

(
ρµb (b̂)

bi

)
a.e.

Again, for Pr(b̂ = b|b) = (1 − γ)n, the BKS transform achieves Varb̂∼µb

∣∣∣ρBKSb (b̂)

bi

∣∣∣ = 1−γ
γ

for

all b. Lemma 63 shows that this is a lower bound for any such µ almost everywhere.

Technical Lemmas

The next lemma gives our main lower bound on the worst coefficient:

Lemma 64 If a measure µ satisfies the monotonicity condition, then for any player i, bid
b, and set of bids B−i ⊆ Rn−1

+ :

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ Pr
(
b̂i = bi ∧ b̂−i ∈ B−i

∣∣∣ b)− 1
bi

∫ bi
0

Pr
(
b̂i = bi ∧ b̂−i ∈ B−i

∣∣∣u, b−i)
Pr
(
b̂i < bi ∧ b̂−i ∈ B−i

∣∣∣ b) ,

and∫
b̂i≤bi∧b̂−i∈B−i

(
ρµb (b̂)

bi

)2

dµb ≥Pr
(
b̂i ≤ bi ∧ b̂−i ∈ B−i

∣∣∣ b) Pr
(
b̂i = bi ∧ b̂−i ∈ B−i

∣∣∣ b)
Pr
(
b̂i < bi ∧ b̂−i ∈ B−i

∣∣∣ b)
×

1−
1
bi

∫ bi
0

Pr
(
b̂i = bi ∧ b̂−i ∈ B−i

∣∣∣u, b−i)
Pr
(
b̂i = bi ∧ b̂−i ∈ B−i

∣∣∣ b)
2

,

where the integral terms are zero almost everywhere in b by Lemma 67.
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Proof: Define the sets

B(=) = {bi} ×B−i and B(<) = [0, bi)×B−i ,

i.e. the set B(=) contains bids b̂ where b̂i = bi and b̂−i ∈ B−i, and the set B(<) contains bids
b̂ where b̂i < bi and b̂−i ∈ B−i. The main work of the lemma is to bound the following term:∫

b̂∈B(<)

ρµb (b̂)

bi
dµb =

νb,i(B
(<))

bi

=
biµb(B

(<))−
∫ bi

0
µu,b−i(B

(<))du

bi

= µb(B
(<))− 1

bi

∫ bi

0

µu,b−i(B
(<))du

= Pr
(
b̂ ∈ B(<)

∣∣∣ b)− 1

bi

∫ bi

0

Pr
(
b̂ ∈ B(<)

∣∣∣u, b−i) du .

By monotonicity, Pr
(
b̂ ∈ B(<) ∪B(=)

∣∣∣u, b−i) is weakly decreasing in u (Lemma 39). This

implies

Pr
(
b̂ ∈ B(=)

∣∣∣ b)+Pr
(
b̂ ∈ B(<)

∣∣∣ b) ≤ 1

bi

∫ bi

0

(
Pr
(
b̂ ∈ B(=)

∣∣∣u, b−i)+ Pr
(
b̂ ∈ B(<)

∣∣∣u, b−i)) du
and thus∫

b̂∈B(<)

ρµb (b̂)

bi
dµb = Pr

(
b̂ ∈ B(<)

∣∣∣ b)− 1

bi

∫ bi

0

Pr
(
b̂ ∈ B(<)

∣∣∣u, b−i) du
≤ −

(
Pr
(
b̂ ∈ B(=)

∣∣∣ b)− 1

bi

∫ bi

0

Pr
(
b̂ ∈ B(=)

∣∣∣u, b−i) du) .

To bound supb̂∈B(<)

∣∣∣ρµb (b̂)

bi

∣∣∣, we have

sup
b̂∈B(<)

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥
∣∣∣∣∣∣
∫
b̂∈B(<)

ρµb (b̂)

bi
dµb

µb(B(<))

∣∣∣∣∣∣ ≥
Pr
(
b̂ ∈ B(=)

∣∣∣ b)− 1
bi

∫ bi
0

Pr
(
b̂ ∈ B(=)

∣∣∣u, b−i)
Pr
(
b̂ ∈ B(<)

∣∣∣ b)
Lemma 67 implies that the limit term is zero almost everywhere in b.
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For our partial bound on the second moment, we write∫
b̂∈B(<)∪B(=)

(
ρµb (b̂)

bi

)2

dµb ≥
∫
b̂∈B(=)

(
ρµb (b̂)

bi

)2

dµb +

∫
b̂∈B(<)

(
ρµb (b̂)

bi

)2

dµb

≥µb(B(=))

∫b̂∈B(=)

ρµb (b̂)

bi
dµb

µb(B(=))

2

+ µb(B
(<))

∫b̂∈B(<)

ρµb (b̂)

bi
dµb

µb(B(<))

2

≥µb(B(=))

Pr
(
b̂ ∈ B(=)

∣∣∣ b)− 1
bi

∫ bi
0

Pr
(
b̂ ∈ B(=)

∣∣∣u, b−i) du
µb(B(=))

2

+ µb(B
(<))

Pr
(
b̂ ∈ B(=)

∣∣∣ b)− 1
bi

∫ bi
0

Pr
(
b̂ ∈ B(=)

∣∣∣u, b−i) du
µb(B(<))

2

≥
(
µb(B

(<)) + µb(B
(=))
) µb(B(=))

µb(B(<))

×

1−
1
bi

∫ bi
0

Pr
(
b̂ ∈ B(=)

∣∣∣u, b−i) du
Pr
(
b̂ ∈ B(=)

∣∣∣ b)
2

Which is the desired bound.

Lemma 65 Let η : {0, 1}n be a function over subsets S ⊆ [n] with η([n]) ≥ α ∈ [0, 1] and∑
S⊆[n] η(S) ≤ β ∈ [0, 1]. Then

max
S,i∈[n]\S

η(S ∪ {i})
η(S)

≥ 1− φ
φ

where φ = 1−
(
α
β

) 1
n

.

Proof: By contradiction. Assume that for every S and i 6∈ S,

η(S ∪ {i})
η(S)

<
1− φ
φ

where φ = 1−
(
α
β

) 1
n
.

Then by multiplying η(S)
η(S∪{i}) terms together we get

η(S) ≥ η([n])

(
φ

1− φ

)n−|S|
.
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Summing over all S ⊆ [n], substituting for α and β, and algebra gives

∑
S⊆[n]

η(S) > η([n])
∑
S⊆[n]

(
φ

1− φ

)n−|S|

β > α
∑
S⊆[n]

(
φ

1− φ

)n−|S|
β(1− φ)n > α

∑
S⊆[n]

(1− φ)|S|φn−|S|

β (1− φ)n > α

β

(
1−

(
1−

(
α

β

) 1
n

))n

> α

α > α .

Which is a contradiction.

Lemma 66 Let η : {0, 1}n be a function over subsets S ⊆ [n] with η([n]) ≥ α ∈ [0, 1] and∑
S⊆[n] η(S) = β ∈ [0, 1]. Then

max
i

∑
S|i 6∈S

(η(S) + η(S ∪ {i})) η(S ∪ {i})
η(S)

≥ β
1− φ
φ

where φ = 1−
(
α
β

) 1
n

.

Proof: We lower-bound the sum. Fix i and differentiate the sum:

∂

∂η(S)

∑
T |i 6∈T

(η(T ) + η(T ∪ {i})) η(T ∪ {i})
η(T )

 =

2 η(S)
η(S\{i}) + 1, i ∈ S

−
(
η(S∪{i})
η(S)

)2

, i 6∈ S .

The conditions of the lemma bound
∑

S η(S) and η([n]), otherwise the values of η are only
constrained to be in [0, 1]. The derivative tells us that in an optimal assignment, for all sets

S that do not contain i, the ratio η(S∪{i})
η(S)

is constant. Construct such an optimal assignment
and define φi as satisfying

η(S ∪ {i})
η(S)

=
1− φi
φi

for all S that do not contain i. Note that this implies∑
S|i 6∈S

(η(S) + η(S ∪ {i})) η(S ∪ {i})
η(S)

≥ β
1− φi
φi
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For any set S it follows that

η(S) = η([n])
∏
i 6∈S

φi
1− φi∑

S⊆[n]

η(S) = η([n])
∑
S⊆[n]

∏
i 6∈S

φi
1− φi

β
∏
i∈[n]

(1− φi) ≥ α
∑
S⊆[n]

∏
i∈S

(1− φi)
∏
i 6∈S

φi∏
i∈[n]

(1− φi) ≥
α

β
.

This implies there is some i such that φi ≤ 1−
(
α
β

) 1
n
, which implies the lemma.

The next lemma is our main analysis lemma. We will ultimately use it to claim that our
lower bound must hold almost everywhere for any µ:

Lemma 67 For any resampling distribution µ that satisfies the monotonicity condition, any
bid b, and any bidder i, ∫ bi

0

Pr
µ

(b̂i = bi|u, b−i) = 0 a.e.

(i.e. for all but a set of b with zero measure).

Proof: Define the marginalized measure µib for a set of bids B ⊆ R as

µib(B) ≡ µb({b ∈ Rn|bi ∈ B}) .

Note that
µiu,b−i({bi}) = Pr

µ
(b̂i = bi|u, b−i)

and therefore our task is to show that

lim
u→−bi

µiu,b−i({bi}) = 0 a.e.

Next we show that for any b we can prove the desired limit is zero by proving that a
related integral is zero. Assume that for some b we have

lim
u→−bi

µiu,b−i({bi}) > 0 .

Then there exists a δb such that

∀u ∈ (bi − δb, bi) : µiu,b−i({bi}) > 0 .
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Since µiu,b−i({bi}) is nonnegative, this implies∫
u∈R

µiu,b−i({bi})du ≥
∫
u∈(bi−δb,bi)

µiu,b−i({bi})du > 0 .

Taking the contrapositive, it follows that if the integral is zero at a bid b then the limit is
also zero: ∫

u∈R
µiu,b−i({bi})du = 0⇒ lim

u→−bi
µiu,b−i({bi}) = 0 . (B.1)

Henceforth, we will prove that
∫
u∈R µ

i
u,b−i

({bi})du = 0 almost everywhere.
We start with the integral ∫

b∈R

∫
u∈R

µiu,b−i({bi})dudb .

Manipulating the integral and noting that
∫
u∈R 1{u}(b̂i)du = 0, we get∫

b∈R

∫
u∈R

µiu,b−i({bi})dudb =

∫
b∈R

∫
u∈R

µibi,b−i({u})dudb

=

∫
b∈Rn

∫
u∈R

∫
b̂i∈R

1{u}(b̂i)dµ
i
bdudb

=

∫
b∈Rn

∫
b̂i∈R

∫
u∈R

1{u}(b̂i)dudµ
i
bdb

=

∫
b∈Rn

∫
b̂i∈R

0dµibdb

= 0

(where integral rearrangements may be justified by Tonelli’s Theorem). By Fact 81, this
implies ∫

u∈R
µiu,b−i({bi})du = 0 almost everywhere over b,

which implies the desired result.

Welfare and Revenue Optimality

Under mild assumptions, one can show that optimizing precision is equivalent to optimizing
the social welfare approximation or the revenue approximation. We include only the worst-
case optimality proofs; the variance proof is similar, applying ideas from Lemma 63.

The optimality proof is divided into two steps:
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1. Lemmas 68 and 69: Show that the welfare/revenue approximation of a resampling
distribution µ is essentially

inf
b

min
i∈[n]

Pr
(
b̂i ≥ bi and b̂−i = b−i

∣∣∣ b) .

The welfare and revenue lemmas use different techniques to give a lower bound on the
approximation; however, they use the same “bad” allocation function.

2. Lemma 70 and finally Lemma 58: Show that a distribution that optimizes the worst-
case normalized payment with respect to

min
i∈[n]

Pr
(
b̂i ≥ bi and b̂−i = b−i

∣∣∣ b) ≥ α

must take Pr(b̂ 6≤ b|b) = 0 and, therefore

min
i∈[n]

Pr
(
b̂i ≥ bi and b̂−i = b−i

∣∣∣ b) = Pr
(
b̂ = b

∣∣∣ b)
implying that it is sufficient to optimize with respect to Pr(b̂ = b|b) ≥ (1− γ)n = α.

The following lemmas characterize the welfare and revenue approximations of the reduc-
tion generated by a resampling distribution µ:

Lemma 68 The welfare approximation of a resampling distribution µ for a bid b is

α = min
i∈[n]

Pr
(
b̂i ≥ bi and b̂−i = b−i

∣∣∣ b) .

Proof: For a bid b, define the set Bi ⊂ Rn
+ as

Bi = {b̂|b̂i ≥ bi and b̂−i = b−i} .

Monotonicity of A requires that for all u ≥ bi,

Ai(u, b−i) ≥ Ai(b) .

Thus, the allocation received by player i under A is at least

Pr
(
b̂i ≥ bi and b̂−i = b−i

∣∣∣ b)Ai(b) = Pr
(
b̂ ∈ Bi

∣∣∣ b)Ai(b)
and thus the social welfare is at least∑

i∈[n]

biAi(b) ≥
∑
i∈[n]

bi Pr
(
b̂ ∈ Bi

∣∣∣ b)Ai(b)
≥ min

i∈[n]

(
Pr
(
b̂ ∈ Bi

∣∣∣ b))∑
i∈[n]

biAi(b) .
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This lower bound is tightin the following allocation rule

Ai(b̂) =

{
1 i = j and b̂ ∈ Bi

0 otherwise

when j = argmini∈[n] bi Pr(b̂ ∈ Bi|b).

Lemma 69 The revenue approximation αR of a reduction given by a resampling distribution
µ is bounded from below by the precision

αP = inf
b

Pr
(
b̂ = b

∣∣∣ b) ≤ αR

and above by

αR ≤ inf
b

min
i∈[n]

Pr
(
b̂i ≥ bi ∧ b̂−i = b−i

∣∣∣ b) .

Proof: To see that the precision αP = infb Pr
(
b̂ = b

∣∣∣ b) is a lower bound on the revenue

approximation, consider decomposing the mechanism produced by the reduction as follows:
with probability αP , the mechanism uses the original allocation function, and with probabil-
ity 1− αP it chooses an allocation function Ars that resamples bids more frequently. Since
prices are linear, the final expected price will be the weighted sum of the truthful prices for
A and the truthful prices for Ars.

For positive types, revenue from both A and Ars will be nonnegative, and the revenue of
the resulting mechanism will be the weighted sum of the revenues from A and Ars. Thus,
since A is chosen with probability αP , the revenue of their combination will be at least αP
times the revenue from A.

Next we use the allocation function from Lemma 68 to give an upper bound. For clarity,
we assume that the infimum in the bound of α is attained by some b. (The proof when the
infimum is not attained is messier but fundamentally the same.) Let b be a bid such that

min
i∈[n]

Pr
(
b̂i ≥ bi ∧ b̂−i = b−i

∣∣∣ b) = α .

Again, let Bi ⊂ Rn
+ be the set

Bi = {b̂|b̂i ≥ bi and b̂−i = b−i} ,

and consider following allocation function, where j = argmini∈[n] bi Pr(b̂ ∈ Bi|b):

Ai(b̂) =

{
1 i = j and b̂ ∈ Bi

0 otherwise.
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When this allocation function is implemented directly with the Archer-Tardos pricing rule,
the revenue when bidders say b will be

∑
i∈[n]

biAi(b)−
∫ bi

−∞
Ai(u, b−i)du = bj .

Now, for any single call reduction, the expected revenue will be

∑
i∈[n]

biE[Asci (b)]−
∫ bi

−∞
E[Asci (u, b−i)]du ≤ bjE[Ascj (b)]

= bj Pr
(
b̂ ∈ Bj

∣∣∣ b) .

Thus, the revenue approximation when players bid b is at most Pr(b̂ ∈ Bj|b).

Lemma 70 The worst-case bid-normalized payment for a resampling distribution µ is at
least

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ max

(
1− γ(=)

γ(=)
,
1− γ(>)

γ(>)

)
a.e.

where

γ(=) = 1−

(
Pr(b̂ = b|b)
Pr(b̂ ≤ b|b)

) 1
n

and

γ(>) = 1−

(
mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b)

1
n
Pr(b̂ 6≤ b|b)

) 1
n−1

.

The bound holds everywhere under the nice distribution assumption.

Proof: For the sake of clarity, we assume the nice distribution assumption. The general case
follows naturally by carrying extra terms through the analysis.

Corollary 60 says that for any M ⊂ [n] and i 6∈M ,

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ πµ(M ∪ {i}, b)
πµ(M, b)

.

Since
∑

M⊆[n] π(M, b̄) = Pr
(
b̂ ≤ b̄

∣∣∣ b̄), applying Lemma 65 with η(S) = πµ(M, b) implies

that

max
M⊆[n]

πµ(M ∪ {i}, b)
πµ(M, b)

≥ 1− γ(=)

γ(=)
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where γ(=) is

γ(=) = 1−

(
Pr(b̂ = b|b)
Pr(b̂ ≤ b̄|b̄)

) 1
n

.

Thus,

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ(=)

γ(=)
.

Next, define νµ(M, j, b) as the probability that b̂j > bj while bids i 6= j obey M (that is,

b̂i = bi for i ∈ M and b̂i < bi if i 6∈ M). Lemma 64 implies that for all j, M ⊆ [n] \ {j} and
i 6∈M ∪ {j},

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ νµ(M ∪ {i}, j, b)
νµ(M, j, b)

a.e.

For any particular j, applying Lemma 65 with η(S) = νµ(S, j, b) as above implies that

max
M⊂[n]\{j}

νµ(M ∪ {i}, j, b)
νµ(M, j, b)

≥ 1− γ(j)

γ(j)

where γ(j) is

γ(j) = 1−

(
Pr(b̂j > bj ∧ b̂−j = b−j|b)
Pr(b̂j > bj ∧ b̂−j ≤ b−j|b)

) 1
n−1

.

Since the probabilities Pr(b̂j > bj ∧ b̂−j ≤ b−j|b) are disjoint, there must be some j such
that (

1− γ(j)
)n−1 ≥

mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b)
1
n

Pr(b̂ 6≤ b|b)
.

Pr(b̂j > bj ∧ b̂−j = b−j|b)
Pr(b̂j > bj ∧ b̂−j ≤ b−j|b)

≥
mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b)

1
n

Pr(b̂ 6≤ b|b)
.

Thus, it must be that

max
j,M⊂[n]\{j},i 6∈M∪{j}

νµ(M ∪ {i}, j, b)
νµ(M, j, b)

≥ 1− γ(>)

γ(>)

where γ(>) satisfies

γ(>) = 1−

(
mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b)

1
n

Pr(b̂ 6≤ b|b)

) 1
n−1

.

Consequently,

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ(>)

γ(>)
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as desired.

We now have the tools to prove that a resampling distribution that optimizes payments
subject to a precision bound also optimizes them subject to a welfare approximation or
revenue approximation bound: Proof:[of Lemma 58] For clarity, we argue under the nice
distribution assumption. Subject to mini∈[n] Prµ(b̂i > bi ∧ b̂−i = b−i|b) ≥ α > 2−n, the BKS
transformation achieves

sup
b̂

∣∣∣∣∣ρBKSb (b̂)

bi

∣∣∣∣∣ =
α

1
n

1− α 1
n

,

so any optimal distribution must do at least as well.
Let µ be some resampling distribution. If Prµ(b̂ 6≤ b|b) 6= 0, either

Prµ(b̂ = b|b)
Prµ(b̂ ≤ b̄|b̄)

> α ,

or
mini∈[n] Prµ(b̂i > bi ∧ b̂−i = b−i|b)

Prµ(b̂ 6≤ b|b)
≥ α .

In the first case, applying Lemma 70 gives

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ(=)

γ(=)
>

α
1
n

1− α 1
n

= sup
b̂

∣∣∣∣∣ρBKSb (b̂)

bi

∣∣∣∣∣
and therefore µ cannot be optimal.

In the second case, Lemma 70 and the assumption that α > 2−n ≥ 1
nn

gives

γ(>) ≤ 1− (nα)
1

n−1

< 1− (α−
1
nα)

1
n−1

= 1− α
1
n .

Thus, γ(>) < 1− α 1
n , so

sup
b̂

∣∣∣∣∣ρµb (b̂)

bi

∣∣∣∣∣ ≥ 1− γ(>)

γ(>)
>

α
1
n

1− α 1
n

= sup
b̂

∣∣∣∣∣ρBKSb (b̂)

bi

∣∣∣∣∣
so again µ cannot be optimal.

It follows that any optimal distribution µ must have Pr(b̂ 6≤ b|b) = 0 and, therefore

min
i∈[n]

Pr
(
b̂i > bi ∧ b̂−i = b−i

∣∣∣ b) = Pr
(
b̂ = b

∣∣∣ b) .

Thus, a distribution which wishes to optimize the worst-case normalized payment subject to
Pr(b̂ = b|b) ≥ α will also optimize payments subject to mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b) ≥ α,

and will have Pr(b̂ = b|b) = mini∈[n] Pr(b̂i > bi ∧ b̂−i = b−i|b).
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B.2 Analysis Definitions, Facts, and Lemmas

This section provides a limited background on analysis concepts.

Measures and Integrals

We begin with various possible set of axioms a collection of sets may satisfy, and their
technical names.

Definition 34 (σ-algebra) The σ-algebra over a set U is a non-empty collection Σ of
subsets of U that is closed under complementation and countable union of its members.
The pair (U,Σ) is called a measurable space.

Definition 35 (Generated σ-algebra) Given a set U and a collection of subsets F of U ,
there is a unique smallest σ-algebra over U containing all the elements of F . This σ-algebra
is denoted by σ(F ) and is called as the σ-algebra generated by F .

Definition 36 (Borel σ-algebra) The Borel σ-algebra B(U) of a metric space U is the
σ-algebra generated by the collection of all open sets of U .

Definition 37 (Measurable sets) Once we fix a measurable space (U,Σ), the sets X ∈ Σ
are called measurable sets.

Definition 38 (Measurable functions) Given two measurable spaces (U,Σ) and (U ′,Σ′),
a function f : U → U ′ is measurable if for each X ′ ∈ Σ′, f−1(X ′) ∈ Σ.

We are now ready for the definition of a measure.

Definition 39 (Measure) Given a measurable space (U,Σ), we equip it with a measure ν,
which is function ν : Σ→ [0,∞] that satisfies

1. ν(∅) = 0

2. Countable additivity, i.e. for all countable sequences {Xi}i∈Z of pairwise-disjoint sets
in Σ, ν(∪i∈ZXi) =

∑
i∈Z ν(Xi).

A measure ν is said to be finite if ν(U) is finite.

Definition 40 (Probability measure) A measure is a probability measure if ν(U) = 1.

Definition 41 (Signed measure) A signed measure is a function ν : Σ → [−∞,∞] that
satisfies ν(∅) = 0 and countable additivity.

Fact 71 If ν1 and ν2 are finite (signed) measures, then ν3(X) = ν1(X) − ν2(X) is a finite
signed measure.
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Convention According to standard convention, a measure is not signed unless explicitly
stated. For the purposes of this paper, the set U will always be Rn.

Apart from the set collections defined via σ-algebras, we also need some weaker set
collections, which we define below.

Definition 42 (π-system) The π-system over a set U is a non-empty collection P of sub-
sets of U that is closed under finite intersection of its members, i.e., X1 ∩X2 ∈ P whenever
X1 and X2 ∈ P .

Definition 43 (λ-system, or Dynkin system) The λ-system over a set U is a non-empty
collection L of subsets of U that is closed under complementation and countable disjoint union
of its members.

Fact 72 (Dynkin’s theorem) If P is a π-system and L is a λ-system over the same set
U , and P ⊆ L, then σ(P ) ⊆ L, i.e., the σ-algebra generated by P is contained in L.

The Hahn and Jordan decompositions decompose a signed measure into two measures.
They will be useful when we discuss the integral with respect to a signed measure.

Fact 73 (Hahn decomposition theorem) The Hahn decomposition of a signed measure
ν over a measurable space (U,Σ) consists of two sets P,N ∈ Σ such that P ∪ N = U ,
P ∩ N = ∅, and for all measurable sets X ⊆ P , ν(X) ≥ 0 and for all measurable sets
X ⊆ N , ν(X) ≤ 0. The Hahn decomposition is guaranteed to exist and be unique (up to a
set of measure 0)

Fact 74 (Jordan decomposition theorem) This theorem is a consequence of Hahn de-
composition theorem, and states that every signed measure ν can be decomposed as two
(non-negative) measures ν+(X) = ν(X ∩ P ) and ν−(X) = −ν(X ∩N), where P and N are
the Hahn decomposition of ν. The measures satisfy ν(X) = ν+(X) − ν−(X). The Jordan
decomposition is guaranteed to exist and to be unique, and at least one of ν+ and ν− is
guaranteed to be a finite measure. If ν is finite, then both ν+ and ν− are finite.

Definition 44 (Characteristic Function) The characteristic function 1S(x) of a set S is
the function that is 1 if x ∈ S and zero elsewhere, i.e.

1S(x) =

{
1, x ∈ S
0, otherwise.

Definition 45 (Simple Function) Given a measurable space (U,Σ), a function s : U → R
is a simple function if it can be written as a finite linear combination of indicator function
of measurable sets. That is,

s(x) =
n∑
k=1

ak1Sk(x)

for finite sequences of measurable sets {Sk} ∈ Σ and coefficients {ak} ∈ R.
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Fact 75 For any non-negative, measurable function f , there is a monotonic increasing se-
quence of non-negative simple functions {sk} such that

f = lim
k→∞

sk .

Definition 46 (Integral) Given a measurable space (U,Σ), the integral of a function f :
U → R with respect to a measure ν is defined incrementally. For any measurable set X, the
integral of 1X is ∫

U

1Xdν = ν(X) .

For any simple function s : U → R,∫
U

sdν =
n∑
k=1

akν(Xk) .

For a general non-negative function f : U → R,∫
U

fdν = sup

{∫
U

sdν : 0 ≤ s ≤ f and s is simple

}
.

For general f , let f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0), i.e. f+ and f− are
the positve and negative parts of f respectively. Then∫

U

fdν =

∫
U

f+dν −
∫
U

f−dν .

Finally, for some measurable set Y , ∫
Y

fdν =

∫
U

fdνY

where νY (X) = ν(U ∩ Y ).

Fact 76 (Monotone Convergence Theorem) For any countable, monotone sequence of
measurable functions {fk} (that is, sequence where fk ≥ fk−1 pointwise),

lim
k→∞

∫
fkdν =

∫
lim
k→∞

fkdν .

The following fact follows because gk =
∑k

i=1 fi satisfies the monotone convergence theorem:

Fact 77 For any countable sequence of nonnegative measurable functions {fk}
∞∑
k=1

∫
fkdν =

∫ ∞∑
k=1

fkdν .
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Fact 78 Let {Xk} be a countable sequence of disjoint sets. Then∑
k

∫
Xk

fdν =

∫
∪kXk

fdν .

Definition 47 (Integral with respect to a Signed Measure) The integral of a func-
tion f with respect to a signed measure ν is∫

U

fdν =

∫
U

fdν+ −
∫
U

fdν− ,

where ν+ and ν− are the Jordan decomposition of ν.

Densities and Derivatives

Definition 48 (Absolute continuity) Given a signed measure ν and a measure µ on the
same measurable space, ν is absolutely continuous w.r.t. µ, if for every measurable set V
where µ(V ) = 0, we have ν(V ) = 0.

We now state below the Radon-Nikodym theorem the way we use it, though the theorem
itself is more general.

Fact 79 (Radon-Nikodym Theorem) The RadonNikodym theorem states that given a
finite signed measure ν and a finite measure µ on the same measurable space such that ν is
absolutely continuous w.r.t. µ, the measure ν has a density, or “Radon-Nikodym derivative”,
with respect to µ, i.e., there exists a µ-measurable function ρ taking values in [0,∞], such
that for any µ-measurable set X we have

ν(X) =

∫
X

ρdµ .

Fact 80 If ρ is a Radon-Nikodym derivative of measure ν w.r.t. measure µ, then∫
X

f(x)dν =

∫
X

ρ(x)f(x)dµ

wherever
∫
X
f(x)dν is well defined.

Almost Everywhere

Definition 49 (Almost Everywhere) A property P (s) is said to hold almost everywhere
on a set S if the subset of S on which P (s) is false has measure zero (or is contained in a
set that has measure 0). It is abbreviated a.e..The exact measure used will become clear from
the context.
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Definition 50 (Almost Surely) If a property P (s) is false with probability 0 with respect
to some distribution over s, then it is said to hold almost surely. This is equivalent to saying
P (s) is true almost everywhere with respect to the probability measure associated with the
distribution.

Fact 81 For a non-negative measurable function f and measure µ,
∫
fdµ = 0 if and only if

f(x) = 0 almost everywhere.

Fact 82 For any measurable function f and signed measure ν, if
∫
X
fdν = 0 for all mea-

surable X, then f = 0 almost everywhere.

The second fact follows from the first by a standard argument — decompose f into its
positive and negative parts and decompose ν according to its Hahn decomposition. This
partitions the space into four sets over which the integral may be written as a non-negative
function with respect to a non-negative measure. Apply Fact 81 to each of the four sets.

Extrema

Definition 51 (Supremum/Infimum) For a set S, the supremum of S, denoted supS,
is the smallest value x such that x ≥ s for all s ∈ S. Similarly, the infimum of s is the
largest value x such that x ≤ s for all s ∈ S.

Definition 52 (Limit Superior/Inferior) For a real-valued function f : Rn → R, the
limit superior, denoted lim supu→b f(u), may be defined as follows:

lim sup
u→b

f(u) = lim
ε→0

(
sup

u∈BALL(b,ε)

f(u)

)
where BALL(b, ε) is the open ball of radius ε centered at b. It is an upper bound on the limit
of f(ui) for any sequence of values {ui} that converges to b. The lim inf is defined similarly.
Note that while the limit may not exist as u → b, the lim sup and lim inf are always well
defined for real-valued functions.

It is natural to generalize sup and lim sup to almost everywhere:

Definition 53 (Essential Supremum/Infimum) The essential supremum of a set S, de-
noted ess supS, is the smallest value x such that x ≥ s almost everywhere, i.e. the set of
values T = {s|s ∈ S and s > x} has measure zero. The essential infimum ess inf is defined
similarly.

Definition 54 (limesssup/limessinf) For a function f : Rn → R, the lim ess supu→b f(u)
can be defined as follows:

lim ess sup
u→b

f(u) = lim
ε→0

(
ess sup

u∈BALL(b,ε)

f(u)

)
.
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It can be understood as a version of the lim sup that will ignore values that f(x) only attains
on sets with measure zero. The lim ess inf is defined similarly. Like the lim sup and lim inf,
the lim ess sup and lim ess inf are always well defined for real-valued functions.
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